日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

D. Steps to One(概率DP,莫比乌斯反演)

發(fā)布時間:2023/12/4 编程问答 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 D. Steps to One(概率DP,莫比乌斯反演) 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

D. Steps to One

f[i]f[i]f[i]gcd?\gcdgcdiii,還需要多少個數(shù),那么有f[i]=1+∑j=1mf[gcd?(i,j)]mf[i] = 1 + \frac{\sum\limits_{j = 1} ^{m} f[\gcd(i, j)]}{m}f[i]=1+mj=1m?f[gcd(i,j)]?

f[1]=0f[1] = 0f[1]=0,考慮化簡∑j=1mf[gcd?(i,j)]\sum\limits_{j = 1} ^{m} f[\gcd(i, j)]j=1m?f[gcd(i,j)]
∑d∣if[d]∑j=1m[gcd?(i,j)=d]給定i,d,求∑j=1m[gcd?(i,j)=d]∑j=1md[gcd?(id,j)=1]∑k∣idμ(k)mkd則原式為∑d∣if[d]∑k∣idμ(k)mkd\sum_{d \mid i} f[d] \sum_{j = 1} ^{m}[\gcd(i, j) = d]\\ 給定i, d,求\sum_{j = 1} ^{m}[\gcd(i, j) = d]\\ \sum_{j = 1} ^{\frac{m}ozvdkddzhkzd}[\gcd(\frac{i}ozvdkddzhkzd, j) = 1]\\ \sum_{k \mid \frac{i}ozvdkddzhkzd} \mu(k) \frac{m}{kd}\\ 則原式為 \sum_{d \mid i} f[d] \sum_{k \mid \frac{i}ozvdkddzhkzd} \mu(k) \frac{m}{kd}\\ di?f[d]j=1m?[gcd(i,j)=d]i,dj=1m?[gcd(i,j)=d]j=1dm??[gcd(di?,j)=1]kdi??μ(k)kdm?di?f[d]kdi??μ(k)kdm?

#include <bits/stdc++.h>using namespace std;const int N = 1e5 + 10, mod = 1e9 + 7;int f[N], prime[N], mu[N], m, cnt;vector<int> fac[N];bool st[N];int quick_pow(int a, int n) {int ans = 1;while (n) {if (n & 1) {ans = 1ll * ans * a % mod;}a = 1ll * a * a % mod;n >>= 1;}return ans; }inline int inv(int a) {return quick_pow(a, mod - 2); }void init() {mu[1] = 1;for (int i = 2; i < N; i++) {if (!st[i]) {prime[++cnt] = i;mu[i] = mod - 1;}for (int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if (i % prime[j] == 0) {break;}mu[i * prime[j]] = (mod - mu[i]) % mod;}}for (int i = 1; i < N; i++) {for (int j = i; j < N; j += i) {fac[j].push_back(i);}} }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);init();scanf("%d", &m);int inv_m = inv(m);for (int i = 1; i <= m; i++) {for (auto &d : fac[i]) {if (d == i) {continue;}int cur = 0;for (auto &k : fac[i / d]) {cur = (cur + 1ll * mu[k] * (m / (k * d)) % mod) % mod;}f[i] = (f[i] + 1ll * f[d] * cur % mod) % mod;}f[i] = 1ll * (m + f[i]) * inv(m - m / i) % mod;}int ans = 0;for (int i = 1; i <= m; i++) {ans = (ans + f[i]) % mod;}cout << (1 + 1ll * ans * inv_m) % mod << "\n";return 0; } 創(chuàng)作挑戰(zhàn)賽新人創(chuàng)作獎勵來咯,堅持創(chuàng)作打卡瓜分現(xiàn)金大獎

總結

以上是生活随笔為你收集整理的D. Steps to One(概率DP,莫比乌斯反演)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內容還不錯,歡迎將生活随笔推薦給好友。