日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程语言 > python >内容正文

python

python3多线程协程_python3-----多进程、多线程、多协程

發(fā)布時(shí)間:2023/12/2 python 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 python3多线程协程_python3-----多进程、多线程、多协程 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

目前計(jì)算機(jī)程序一般會(huì)遇到兩類(lèi)I/O:硬盤(pán)I/O和網(wǎng)絡(luò)I/O。我就針對(duì)網(wǎng)絡(luò)I/O的場(chǎng)景分析下python3下進(jìn)程、線程、協(xié)程效率的對(duì)比。進(jìn)程采用multiprocessing.Pool進(jìn)程池,線程是自己封裝的進(jìn)程池,協(xié)程采用gevent的庫(kù)。用python3自帶的urlllib.request和開(kāi)源的requests做對(duì)比。代碼如下:

importurllib.requestimportrequestsimporttimeimportmultiprocessingimportthreadingimportqueuedefstartTimer():returntime.time()defticT(startTime):

useTime= time.time() -startTimereturn round(useTime, 3)#def tic(startTime, name):#useTime = time.time() - startTime#print('[%s] use time: %1.3f' % (name, useTime))

defdownload_urllib(url):

req=urllib.request.Request(url,

headers={'user-agent': 'Mozilla/5.0'})

res=urllib.request.urlopen(req)

data=res.read()try:

data= data.decode('gbk')exceptUnicodeDecodeError:

data= data.decode('utf8', 'ignore')returnres.status, datadefdownload_requests(url):

req=requests.get(url,

headers={'user-agent': 'Mozilla/5.0'})returnreq.status_code, req.textclassthreadPoolManager:def __init__(self,urls, workNum=10000,threadNum=20):

self.workQueue=queue.Queue()

self.threadPool=[]

self.__initWorkQueue(urls)

self.__initThreadPool(threadNum)def __initWorkQueue(self,urls):for i inurls:

self.workQueue.put((download_requests,i))def __initThreadPool(self,threadNum):for i inrange(threadNum):

self.threadPool.append(work(self.workQueue))defwaitAllComplete(self):for i inself.threadPool:ifi.isAlive():

i.join()classwork(threading.Thread):def __init__(self,workQueue):

threading.Thread.__init__(self)

self.workQueue=workQueue

self.start()defrun(self):whileTrue:ifself.workQueue.qsize():

do,args=self.workQueue.get(block=False)

do(args)

self.workQueue.task_done()else:breakurls= ['http://www.ustchacker.com'] * 10urllibL=[]

requestsL=[]

multiPool=[]

threadPool=[]

N= 20PoolNum= 100

for i inrange(N):print('start %d try' %i)

urllibT=startTimer()

jobs= [download_urllib(url) for url inurls]#for status, data in jobs:

#print(status, data[:10])

#tic(urllibT, 'urllib.request')

urllibL.append(ticT(urllibT))print('1')

requestsT=startTimer()

jobs= [download_requests(url) for url inurls]#for status, data in jobs:

#print(status, data[:10])

#tic(requestsT, 'requests')

requestsL.append(ticT(requestsT))print('2')

requestsT=startTimer()

pool=multiprocessing.Pool(PoolNum)

data=pool.map(download_requests, urls)

pool.close()

pool.join()

multiPool.append(ticT(requestsT))print('3')

requestsT=startTimer()

pool= threadPoolManager(urls, threadNum=PoolNum)

pool.waitAllComplete()

threadPool.append(ticT(requestsT))print('4')importmatplotlib.pyplot as plt

x= list(range(1, N+1))

plt.plot(x, urllibL, label='urllib')

plt.plot(x, requestsL, label='requests')

plt.plot(x, multiPool, label='requests MultiPool')

plt.plot(x, threadPool, label='requests threadPool')

plt.xlabel('test number')

plt.ylabel('time(s)')

plt.legend()

plt.show()

運(yùn)行結(jié)果如下:

從上圖可以看出,python3自帶的urllib.request效率還是不如開(kāi)源的requests,multiprocessing進(jìn)程池效率明顯提升,但還低于自己封裝的線程池,有一部分原因是創(chuàng)建、調(diào)度進(jìn)程的開(kāi)銷(xiāo)比創(chuàng)建線程高(測(cè)試程序中我把創(chuàng)建的代價(jià)也包括在里面)。

在Windows上要想使用進(jìn)程模塊,就必須把有關(guān)進(jìn)程的代碼寫(xiě)在當(dāng)前.py文件的if __name__ == ‘__main__’ :語(yǔ)句的下面,才能正常使用Windows下的進(jìn)程模塊。Unix/Linux下則不需要。

下面是gevent的測(cè)試代碼:

importurllib.requestimportrequestsimporttimeimportgevent.poolimportgevent.monkey

gevent.monkey.patch_all()defstartTimer():returntime.time()defticT(startTime):

useTime= time.time() -startTimereturn round(useTime, 3)#def tic(startTime, name):#useTime = time.time() - startTime#print('[%s] use time: %1.3f' % (name, useTime))

defdownload_urllib(url):

req=urllib.request.Request(url,

headers={'user-agent': 'Mozilla/5.0'})

res=urllib.request.urlopen(req)

data=res.read()try:

data= data.decode('gbk')exceptUnicodeDecodeError:

data= data.decode('utf8', 'ignore')returnres.status, datadefdownload_requests(url):

req=requests.get(url,

headers={'user-agent': 'Mozilla/5.0'})returnreq.status_code, req.text

urls= ['http://www.ustchacker.com'] * 10urllibL=[]

requestsL=[]

reqPool=[]

reqSpawn=[]

N= 20PoolNum= 100

for i inrange(N):print('start %d try' %i)

urllibT=startTimer()

jobs= [download_urllib(url) for url inurls]#for status, data in jobs:

#print(status, data[:10])

#tic(urllibT, 'urllib.request')

urllibL.append(ticT(urllibT))print('1')

requestsT=startTimer()

jobs= [download_requests(url) for url inurls]#for status, data in jobs:

#print(status, data[:10])

#tic(requestsT, 'requests')

requestsL.append(ticT(requestsT))print('2')

requestsT=startTimer()

pool=gevent.pool.Pool(PoolNum)

data=pool.map(download_requests, urls)#for status, text in data:

#print(status, text[:10])

#tic(requestsT, 'requests with gevent.pool')

reqPool.append(ticT(requestsT))print('3')

requestsT=startTimer()

jobs= [gevent.spawn(download_requests, url) for url inurls]

gevent.joinall(jobs)#for i in jobs:

#print(i.value[0], i.value[1][:10])

#tic(requestsT, 'requests with gevent.spawn')

reqSpawn.append(ticT(requestsT))print('4')importmatplotlib.pyplot as plt

x= list(range(1, N+1))

plt.plot(x, urllibL, label='urllib')

plt.plot(x, requestsL, label='requests')

plt.plot(x, reqPool, label='requests geventPool')

plt.plot(x, reqSpawn, label='requests Spawn')

plt.xlabel('test number')

plt.ylabel('time(s)')

plt.legend()

plt.show()

運(yùn)行結(jié)果如下:

從上圖可以看到,對(duì)于I/O密集型任務(wù),gevent還是能對(duì)性能做很大提升的,由于協(xié)程的創(chuàng)建、調(diào)度開(kāi)銷(xiāo)都比線程小的多,所以可以看到不論使用gevent的Spawn模式還是Pool模式,性能差距不大。

因?yàn)樵趃event中需要使用monkey補(bǔ)丁,會(huì)提高gevent的性能,但會(huì)影響multiprocessing的運(yùn)行,如果要同時(shí)使用,需要如下代碼:

gevent.monkey.patch_all(thread=False, socket=False, select=False)

可是這樣就不能充分發(fā)揮gevent的優(yōu)勢(shì),所以不能把multiprocessing Pool、threading Pool、gevent Pool在一個(gè)程序中對(duì)比。不過(guò)比較兩圖可以得出結(jié)論,線程池和gevent的性能最優(yōu)的,其次是進(jìn)程池。附帶得出個(gè)結(jié)論,requests庫(kù)比urllib.request庫(kù)性能要好一些哈:-)

總結(jié)

以上是生活随笔為你收集整理的python3多线程协程_python3-----多进程、多线程、多协程的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。