Ubuntu 14.04上使用CMake编译MXNet源码操作步骤(C++)
生活随笔
收集整理的這篇文章主要介紹了
Ubuntu 14.04上使用CMake编译MXNet源码操作步骤(C++)
小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
MXNet源碼版本號(hào)為1.3.0,其它依賴庫的版本號(hào)可參考:https://blog.csdn.net/fengbingchun/article/details/84997490
build.sh腳本內(nèi)容為:
#! /bin/bashreal_path=$(realpath $0)
dir_name=`dirname "${real_path}"`
echo "real_path: ${real_path}, dir_name: ${dir_name}"data_dir="data"
if [ -d ${dir_name}/${data_dir} ]; thenrm -rf ${dir_name}/${data_dir}
filn -s ${dir_name}/./../../${data_dir} ${dir_name}new_dir_name=${dir_name}/build
mkdir -p ${new_dir_name}
cd ${new_dir_name}
echo "pos: ${new_dir_name}"
if [ "$(ls -A ${new_dir_name})" ]; thenecho "directory is not empty: ${new_dir_name}"#rm -r *
elseecho "directory is empty: ${new_dir_name}"
ficd -
# build openblas
echo "========== start build openblas =========="
openblas_path=${dir_name}/../../src/openblas
if [ -f ${openblas_path}/build/lib/libopenblas.so ]; thenecho "openblas dynamic library already exists without recompiling"
elsemkdir -p ${openblas_path}/buildcd ${openblas_path}/buildcmake -DBUILD_SHARED_LIBS=ON ..make
filn -s ${openblas_path}/build/lib/libopenblas* ${new_dir_name}
echo "========== finish build openblas =========="cd -
# build dmlc-core
echo "========== start build dmlc-core =========="
dmlc_path=${dir_name}/../../src/dmlc-core
if [ -f ${dmlc_path}/build/libdmlc.a ]; thenecho "dmlc static library already exists without recompiling"
elsemkdir -p ${dmlc_path}/buildcd ${dmlc_path}/buildcmake ..make
filn -s ${dmlc_path}/build/libdmlc.a ${new_dir_name}
echo "========== finish build dmlc-core =========="rc=$?
if [[ ${rc} != 0 ]]; thenecho "########## Error: some of thess commands have errors above, please check"exit ${rc}
ficd -
cd ${new_dir_name}
cmake ..
makecd -
CMakeLists.txt文件內(nèi)容為:
PROJECT(MXNet_Test)
CMAKE_MINIMUM_REQUIRED(VERSION 3.0)# support C++11
SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -std=c11")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
# support C++14, when gcc version > 5.1, use -std=c++14 instead of c++1y
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++1y")IF(NOT CMAKE_BUILD_TYPE)SET(CMAKE_BUILD_TYPE "Release")SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -O2")SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -O2")
ELSE()SET(CMAKE_BUILD_TYPE "Debug")SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -g -Wall -O2")SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -Wall -O2")
ENDIF()
MESSAGE(STATUS "cmake build type: ${CMAKE_BUILD_TYPE}")MESSAGE(STATUS "cmake current source dir: ${CMAKE_CURRENT_SOURCE_DIR}")
SET(PATH_TEST_FILES ${CMAKE_CURRENT_SOURCE_DIR}/./../../demo/MXNet_Test)
SET(PATH_SRC_DMLC_FILES ${CMAKE_CURRENT_SOURCE_DIR}/./../../src/dmlc-core)
SET(PATH_SRC_MSHADOW_FILES ${CMAKE_CURRENT_SOURCE_DIR}/./../../src/mshadow)
SET(PATH_SRC_OPENBLAS_FILES ${CMAKE_CURRENT_SOURCE_DIR}/./../../src/openblas)
SET(PATH_SRC_MXNET_FILES ${CMAKE_CURRENT_SOURCE_DIR}/./../../src/mxnet)
SET(PATH_SRC_TVM_FILES ${CMAKE_CURRENT_SOURCE_DIR}/./../../src/tvm)
SET(PATH_SRC_DLPACK_FILES ${CMAKE_CURRENT_SOURCE_DIR}/./../../src/dlpack)
MESSAGE(STATUS "path test files: ${PATH_TEST_FILES}")# don't use opencv in mxnet
ADD_DEFINITIONS(-DMXNET_USE_OPENCV=0)
ADD_DEFINITIONS(-DMSHADOW_USE_F16C=0)SET(PATH_OPENCV /opt/opencv3.4.2)
IF(EXISTS ${PATH_OPENCV})MESSAGE(STATUS "Found OpenCV: ${PATH_OPENCV}")
ELSE()MESSAGE(FATAL_ERROR "Can not find OpenCV in ${PATH_OPENCV}")
ENDIF()# head file search path
INCLUDE_DIRECTORIES(${PATH_SRC_OPENBLAS_FILES}${PATH_SRC_OPENBLAS_FILES}/build # include openblas config.h${PATH_SRC_DLPACK_FILES}/include${PATH_SRC_MSHADOW_FILES}${PATH_SRC_DMLC_FILES}/include${PATH_SRC_TVM_FILES}/include${PATH_SRC_TVM_FILES}/nnvm/include${PATH_SRC_MXNET_FILES}/src${PATH_SRC_MXNET_FILES}/include${PATH_SRC_MXNET_FILES}/cpp-package/include${PATH_OPENCV}/include${PATH_TEST_FILES}
)# build mxnet dynamic library
SET(MXNET_SRC_LIST )# tvm
FILE(GLOB_RECURSE SRC_TVM_NNVM_C_API ${PATH_SRC_TVM_FILES}/nnvm/src/c_api/*.cc)
FILE(GLOB_RECURSE SRC_TVM_NNVM_CORE ${PATH_SRC_TVM_FILES}/nnvm/src/core/*.cc)
FILE(GLOB_RECURSE SRC_TVM_NNVM_PASS ${PATH_SRC_TVM_FILES}/nnvm/src/pass/*.cc)FILE(GLOB_RECURSE SRC_MXNET ${PATH_SRC_MXNET_FILES}/src/*.cc)LIST(APPEND MXNET_SRC_LIST${SRC_TVM_NNVM_C_API}${SRC_TVM_NNVM_CORE}${SRC_TVM_NNVM_PASS}${SRC_MXNET}
)
#MESSAGE(STATUS "mxnet src: ${MXNET_SRC_LIST}")ADD_LIBRARY(mxnet SHARED ${MXNET_SRC_LIST})# find opencv library
FIND_LIBRARY(opencv_core NAMES opencv_core PATHS ${PATH_OPENCV}/lib NO_DEFAULT_PATH)
FIND_LIBRARY(opencv_imgproc NAMES opencv_imgproc PATHS ${PATH_OPENCV}/lib NO_DEFAULT_PATH)
FIND_LIBRARY(opencv_highgui NAMES opencv_highgui PATHS ${PATH_OPENCV}/lib NO_DEFAULT_PATH)
FIND_LIBRARY(opencv_imgcodecs NAMES opencv_imgcodecs PATHS ${PATH_OPENCV}/lib NO_DEFAULT_PATH)
FIND_LIBRARY(opencv_video NAMES opencv_video PATHS ${PATH_OPENCV}/lib NO_DEFAULT_PATH)
FIND_LIBRARY(opencv_videoio NAMES opencv_videoio PATHS ${PATH_OPENCV}/lib NO_DEFAULT_PATH)
FIND_LIBRARY(opencv_objdetect NAMES opencv_objdetect PATHS ${PATH_OPENCV}/lib NO_DEFAULT_PATH)
FIND_LIBRARY(opencv_ml NAMES opencv_ml PATHS ${PATH_OPENCV}/lib NO_DEFAULT_PATH)
MESSAGE(STATUS "opencv libraries: ${opencv_core} ${opencv_imgproc} ${opencv_highgui} ${opencv_imgcodecs} ${opencv_video}" ${opencv_videoio} ${opencv_objdetect} ${opencv_ml})# find dep library
SET(DEP_LIB_DIR ${CMAKE_CURRENT_SOURCE_DIR}/build CACHE PATH "dep library path")
MESSAGE(STATUS "dep library dir: ${DEP_LIB_DIR}")
LINK_DIRECTORIES(${DEP_LIB_DIR})# recursive query match files :*.cpp
FILE(GLOB_RECURSE TEST_CPP_LIST ${PATH_TEST_FILES}/*.cpp)
FILE(GLOB_RECURSE TEST_CC_LIST ${PATH_TEST_FILES}/*.cc)
MESSAGE(STATUS "test cpp list: ${TEST_CPP_LIST} ${TEST_C_LIST}")# build executable program
ADD_EXECUTABLE(MXNet_Test ${TEST_CPP_LIST} ${TEST_CC_LIST})
# add dependent library: static and dynamic
TARGET_LINK_LIBRARIES(MXNet_Testmxnet${DEP_LIB_DIR}/libdmlc.a${DEP_LIB_DIR}/libopenblas.sopthreadrt # undefined reference to shm_open${opencv_core}${opencv_imgproc}${opencv_highgui}${opencv_imgcodecs}${opencv_video}${opencv_videoio}${opencv_objdetect}${opencv_ml}
)
注:對(duì)源碼有兩處修改:
1. OpenBLAS注釋掉common.h中的第681行;
2.?dmlc-core再用CMake編譯時(shí),關(guān)閉OpenMP的支持,即將CMakeLists.txt中的第18行由ON調(diào)整為OFF.
以下是MNIST?train的測(cè)試代碼:
#include "funset.hpp"
#include <chrono>
#include <string>
#include <fstream>
#include <vector>
#include "mxnet-cpp/MxNetCpp.h"namespace {bool isFileExists(const std::string &filename)
{std::ifstream fhandle(filename.c_str());return fhandle.good();
}bool check_datafiles(const std::vector<std::string> &data_files)
{for (size_t index = 0; index < data_files.size(); index++) {if (!(isFileExists(data_files[index]))) {LG << "Error: File does not exist: " << data_files[index];return false;}}return true;
}bool setDataIter(mxnet::cpp::MXDataIter *iter, std::string useType, const std::vector<std::string> &data_files, int batch_size)
{if (!check_datafiles(data_files))return false;iter->SetParam("batch_size", batch_size);iter->SetParam("shuffle", 1);iter->SetParam("flat", 1);if (useType == "Train") {iter->SetParam("image", data_files[0]);iter->SetParam("label", data_files[1]);} else if (useType == "Label") {iter->SetParam("image", data_files[2]);iter->SetParam("label", data_files[3]);}iter->CreateDataIter();return true;
}} // namespace// mnist
/* reference: https://mxnet.incubator.apache.org/tutorials/c%2B%2B/basics.htmlmxnet_source/cpp-package/example/mlp_cpu.cpp
*/
namespace {mxnet::cpp::Symbol mlp(const std::vector<int> &layers)
{auto x = mxnet::cpp::Symbol::Variable("X");auto label = mxnet::cpp::Symbol::Variable("label");std::vector<mxnet::cpp::Symbol> weights(layers.size());std::vector<mxnet::cpp::Symbol> biases(layers.size());std::vector<mxnet::cpp::Symbol> outputs(layers.size());for (size_t i = 0; i < layers.size(); ++i) {weights[i] = mxnet::cpp::Symbol::Variable("w" + std::to_string(i));biases[i] = mxnet::cpp::Symbol::Variable("b" + std::to_string(i));mxnet::cpp::Symbol fc = mxnet::cpp::FullyConnected(i == 0 ? x : outputs[i - 1], weights[i], biases[i], layers[i]);outputs[i] = i == layers.size() - 1 ? fc : mxnet::cpp::Activation(fc, mxnet::cpp::ActivationActType::kRelu);}return mxnet::cpp::SoftmaxOutput(outputs.back(), label);
}} // namespaceint test_mnist_train()
{const int image_size = 28;const std::vector<int> layers{ 128, 64, 10 };const int batch_size = 100;const int max_epoch = 10;const float learning_rate = 0.1;const float weight_decay = 1e-2;#ifdef _MSC_VERstd::vector<std::string> data_files = { "E:/GitCode/MXNet_Test/data/mnist/train-images.idx3-ubyte","E:/GitCode/MXNet_Test/data/mnist/train-labels.idx1-ubyte","E:/GitCode/MXNet_Test/data/mnist/t10k-images.idx3-ubyte","E:/GitCode/MXNet_Test/data/mnist/t10k-labels.idx1-ubyte"};
#elsestd::vector<std::string> data_files = { "data/mnist/train-images.idx3-ubyte","data/mnist/train-labels.idx1-ubyte","data/mnist/t10k-images.idx3-ubyte","data/mnist/t10k-labels.idx1-ubyte"};#endifauto train_iter = mxnet::cpp::MXDataIter("MNISTIter");setDataIter(&train_iter, "Train", data_files, batch_size);auto val_iter = mxnet::cpp::MXDataIter("MNISTIter");setDataIter(&val_iter, "Label", data_files, batch_size);auto net = mlp(layers);mxnet::cpp::Context ctx = mxnet::cpp::Context::cpu(); // Use CPU for trainingstd::map<std::string, mxnet::cpp::NDArray> args;args["X"] = mxnet::cpp::NDArray(mxnet::cpp::Shape(batch_size, image_size*image_size), ctx);args["label"] = mxnet::cpp::NDArray(mxnet::cpp::Shape(batch_size), ctx);// Let MXNet infer shapes other parameters such as weightsnet.InferArgsMap(ctx, &args, args);// Initialize all parameters with uniform distribution U(-0.01, 0.01)auto initializer = mxnet::cpp::Uniform(0.01);for (auto& arg : args) {// arg.first is parameter name, and arg.second is the valueinitializer(arg.first, &arg.second);}// Create sgd optimizermxnet::cpp::Optimizer* opt = mxnet::cpp::OptimizerRegistry::Find("sgd");opt->SetParam("rescale_grad", 1.0 / batch_size)->SetParam("lr", learning_rate)->SetParam("wd", weight_decay);// Create executor by binding parameters to the modelauto *exec = net.SimpleBind(ctx, args);auto arg_names = net.ListArguments();// Start trainingfor (int iter = 0; iter < max_epoch; ++iter) {int samples = 0;train_iter.Reset();auto tic = std::chrono::system_clock::now();while (train_iter.Next()) {samples += batch_size;auto data_batch = train_iter.GetDataBatch();// Set data and labeldata_batch.data.CopyTo(&args["X"]);data_batch.label.CopyTo(&args["label"]);// Compute gradientsexec->Forward(true);exec->Backward();// Update parametersfor (size_t i = 0; i < arg_names.size(); ++i) {if (arg_names[i] == "X" || arg_names[i] == "label") continue;opt->Update(i, exec->arg_arrays[i], exec->grad_arrays[i]);}}auto toc = std::chrono::system_clock::now();mxnet::cpp::Accuracy acc;val_iter.Reset();while (val_iter.Next()) {auto data_batch = val_iter.GetDataBatch();data_batch.data.CopyTo(&args["X"]);data_batch.label.CopyTo(&args["label"]);// Forward pass is enough as no gradient is needed when evaluatingexec->Forward(false);acc.Update(data_batch.label, exec->outputs[0]);}float duration = std::chrono::duration_cast<std::chrono::milliseconds>(toc - tic).count() / 1000.0;LG << "Epoch: " << iter << " " << samples / duration << " samples/sec Accuracy: " << acc.Get();}#ifdef _MSC_VERstd::string json_file{ "E:/GitCode/MXNet_Test/data/mnist.json" };std::string param_file{"E:/GitCode/MXNet_Test/data/mnist.params"};
#elsestd::string json_file{ "data/mnist.json" };std::string param_file{"data/mnist.params"};
#endifnet.Save(json_file);mxnet::cpp::NDArray::Save(param_file, exec->arg_arrays);delete exec;MXNotifyShutdown();return 0;
}
執(zhí)行結(jié)果如下:
GitHub:https://github.com/fengbingchun/MXNet_Test?
總結(jié)
以上是生活随笔為你收集整理的Ubuntu 14.04上使用CMake编译MXNet源码操作步骤(C++)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Windows10上编译MXNet源码操
- 下一篇: HTTPS协议简介