日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【数字信号处理】傅里叶变换性质 ( 序列对称分解定理示例 | 共轭对称序列与原序列之间的关系 | 共轭反对称序列与原序列之间的关系 )

發布時間:2025/6/17 编程问答 23 豆豆

文章目錄

  • 一、序列對稱分解定理示例
    • 1、序列對稱分解定理
    • 2、因果序列
    • 3、求解過程
      • n < 0 情況
      • n = 0 情況
      • n > 0 情況
      • 實因果序列的對稱序列與原序列關系





一、序列對稱分解定理示例



實因果序列 h(n)h(n)h(n) ,

共軛對稱序列 he(n)h_e(n)he?(n) ,

共軛反對稱序列 ho(n)h_o(n)ho?(n) ,

找出 h(n)h(n)h(n)he(n)h_e(n)he?(n) 序列的關系 , h(n)h(n)h(n)ho(n)h_o(n)ho?(n) 序列的關系 ;


1、序列對稱分解定理


任意一個 序列 x(n)x(n)x(n) , 都可以使用其 共軛對稱序列 xe(n)x_e(n)xe?(n)共軛反對稱序列 xo(n)x_o(n)xo?(n) 之和來表示 ;

x(n)=xe(n)+xo(n)x(n) = x_e(n) + x_o(n)x(n)=xe?(n)+xo?(n)


共軛對稱序列 xe(n)x_e(n)xe?(n)原序列 x(n)x(n)x(n) 之間的關系如下 :

xe(n)=0.5[x(n)+x?(?n)]x_e(n) = 0.5[x(n) + x^*(-n)]xe?(n)=0.5[x(n)+x?(?n)]


共軛反對稱序列 xo(n)x_o(n)xo?(n)原序列 x(n)x(n)x(n) 之間的關系如下 :

xo(n)=0.5[x(n)?x?(?n)]x_o(n) = 0.5[x(n) - x^*(-n)]xo?(n)=0.5[x(n)?x?(?n)]


2、因果序列


① 離散時間系統因果性 :

" 離散時間系統 " nnn 時刻" 輸出 " ,

只取決于 nnn 時刻 及 nnn 時刻 之前 " 輸入序列 " ,

nnn 時刻之后 " 輸入序列 " 無關 ;


離散時間系統 的 " 輸出結果 "" 未來輸入 " 無關 ;



" ② 離散時間系統因果性 " 的 充分必要條件是 :

h(n)=0n<0h(n) = 0 \ \ n < 0h(n)=0??n<0

模擬系統的 " 單位沖激響應 " , 必須 000 時刻開始才有值 , 是 " 單邊序列 " 類型中的 " 右邊序列 " , 000 時刻的值 也就是 起點不能為 000 ;


3、求解過程


h(n)h(n)h(n) 實序列的奇偶對稱 :

  • 偶對稱 ( 共軛對稱 ) : he(n)=he(?n)h_e(n) = h_e(-n)he?(n)=he?(?n)
  • 奇對稱 ( 共軛反對稱 ) : ho(n)=?ho(?n)h_o(n) = -h_o(-n)ho?(n)=?ho?(?n)

n < 0 情況

h(n)h(n)h(n) 是因果序列 , 對于 n<0n< 0n<0 時 , h(n)=0h(n) = 0h(n)=0 ,

根據 序列對稱分解定理 , 共軛對稱序列 xe(n)x_e(n)xe?(n)原序列 x(n)x(n)x(n) 之間的關系 , 可以得到

he(n)=0.5×[h(n)+h(?n)]h_e(n) = 0.5 \times [h(n) + h(-n)]he?(n)=0.5×[h(n)+h(?n)]

其中 , 將 h(n)=0h(n) = 0h(n)=0 代入上式 , 可得到

he(n)=0.5×[h(n)+h(?n)]=0.5×[0+h(?n)]=0.5×h(?n)h_e(n) = 0.5 \times [h(n) + h(-n)] = 0.5 \times [0 + h(-n)] = 0.5 \times h(-n)he?(n)=0.5×[h(n)+h(?n)]=0.5×[0+h(?n)]=0.5×h(?n)

根據 序列對稱分解定理 , 共軛對稱序列 xe(n)x_e(n)xe?(n)原序列 x(n)x(n)x(n) 之間的關系 , 可以得到

ho(n)=0.5×[h(n)?h(?n)]h_o(n) = 0.5 \times [h(n) - h(-n)]ho?(n)=0.5×[h(n)?h(?n)]

其中 , 將 h(n)=0h(n) = 0h(n)=0 代入上式 , 可得到

ho(n)=0.5×[h(n)?h(?n)]=0.5×[0?h(?n)]=?0.5×h(?n)h_o(n) = 0.5 \times [h(n) - h(-n)] = 0.5 \times [0- h(-n)] = -0.5 \times h(-n)ho?(n)=0.5×[h(n)?h(?n)]=0.5×[0?h(?n)]=?0.5×h(?n)

n = 0 情況

由于 he(n)h_e(n)he?(n) 是偶對稱的 , ho(n)h_o(n)ho?(n) 是奇對稱的 , 因此有

he(0)=h(0)h_e(0) = h(0)he?(0)=h(0)

ho(0)=0h_o(0) = 0ho?(0)=0

n > 0 情況

h(n)h(n)h(n) 是因果序列 , 對于 n>0n > 0n>0 時 , h(?n)=0h(-n) = 0h(?n)=0 ,

根據 序列對稱分解定理 , 共軛對稱序列 xe(n)x_e(n)xe?(n)原序列 x(n)x(n)x(n) 之間的關系 , 可以得到

he(n)=0.5×[h(n)+h(?n)]h_e(n) = 0.5 \times [h(n) + h(-n)]he?(n)=0.5×[h(n)+h(?n)]

其中 , 將 h(?n)=0h(-n) = 0h(?n)=0 代入上式 , 可得到

he(n)=0.5×[h(n)+h(?n)]=0.5×[h(n)+0]=0.5×h(n)h_e(n) = 0.5 \times [h(n) + h(-n)] = 0.5 \times [h(n) + 0] = 0.5 \times h(n)he?(n)=0.5×[h(n)+h(?n)]=0.5×[h(n)+0]=0.5×h(n)

根據 序列對稱分解定理 , 共軛對稱序列 xe(n)x_e(n)xe?(n)原序列 x(n)x(n)x(n) 之間的關系 , 可以得到

ho(n)=0.5×[h(n)?h(?n)]h_o(n) = 0.5 \times [h(n) - h(-n)]ho?(n)=0.5×[h(n)?h(?n)]

其中 , 將 h(?n)=0h(-n) = 0h(?n)=0 代入上式 , 可得到

ho(n)=0.5×[h(n)?h(?n)]=0.5×[h(n)?0]=?0.5×h(n)h_o(n) = 0.5 \times [h(n) - h(-n)] = 0.5 \times [h(n)- 0] = -0.5 \times h(n)ho?(n)=0.5×[h(n)?h(?n)]=0.5×[h(n)?0]=?0.5×h(n)

實因果序列的對稱序列與原序列關系

he(n)h_e(n)he?(n)h(n)h(n)h(n) 關系 :

he(n)={h(0)n=0h(n)2n>0h(?n)2n<0h_e(n) =\begin{cases} h(0) & n = 0 \\\\ \cfrac{h(n)}{2} & n > 0 \\\\ \cfrac{h(-n)}{2} & n < 0 \end{cases}he?(n)=????????????????????h(0)2h(n)?2h(?n)??n=0n>0n<0?

根據上式 , 可以反推 h(n)h(n)h(n)he(n)h_e(n)he?(n) 關系 :

h(n)={he(0)n=02he(n)n>00n<0h(n) =\begin{cases} h_e(0) & n = 0 \\\\ 2h_e(n) & n > 0 \\\\ 0 & n < 0 \end{cases}h(n)=????????????????he?(0)2he?(n)0?n=0n>0n<0?

ho(n)h_o(n)ho?(n)h(n)h(n)h(n) 關系 :

ho(n)={0n=0h(n)2n>0?h(?n)2n<0h_o(n) =\begin{cases} 0 & n = 0 \\\\ \cfrac{h(n)}{2} & n > 0 \\\\ \cfrac{-h(-n)}{2} & n < 0 \end{cases}ho?(n)=????????????????????02h(n)?2?h(?n)??n=0n>0n<0?

根據上式 , 可以反推 h(n)h(n)h(n)h0(n)h_0(n)h0?(n) 關系 :

h(n)={h(0)n=02ho(n)n>00n<0h(n) =\begin{cases} h(0) & n = 0 \\\\ 2h_o(n) & n > 0 \\\\ 0 & n < 0 \end{cases}h(n)=????????????????h(0)2ho?(n)0?n=0n>0n<0?

總結

以上是生活随笔為你收集整理的【数字信号处理】傅里叶变换性质 ( 序列对称分解定理示例 | 共轭对称序列与原序列之间的关系 | 共轭反对称序列与原序列之间的关系 )的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 亚洲不卡中文字幕无码 | 91av网址 | 精品一区二区三区免费毛片爱 | 69久久夜色精品国产69 | 黄色三级大片 | 免费观看a级片 | 亚洲成人自拍视频 | 亚洲一区二区三区午夜 | 国产性色av| 私密视频在线观看 | 国精无码欧精品亚洲一区蜜桃 | 亚洲综合干 | 国产精品福利影院 | 国产精品美女av | av美女在线观看 | 欧美成人乱码一二三四区免费 | 亚洲色图14p| 欧美 亚洲 另类 激情 另类 | 亚洲一区 视频 | 久色免费视频 | 91久久精品国产91性色tv | 国产女主播视频 | 日韩精品无码一区二区三区久久久 | 欧美日韩高清一区二区三区 | 国内精品久久久久久久久 | 欧美午夜精品 | 天堂中文资源在线观看 | 国内自拍2020 | 国产视频xxxx| 梦梦电影免费高清在线观看 | 91中文视频 | 男人深夜网站 | 猛男大粗猛爽h男人味 | 欧洲日韩一区二区三区 | 日本黄色免费视频 | 欧美日韩一区二区电影 | 18久久 | 欧美 另类 交 | 欧美比基尼 | 日本黄色三级网站 | 好吊操妞 | 特级淫片裸体免费看冫 | 免费中文视频 | 蜜臀视频一区二区三区 | 性高湖久久久久久久久免费 | 久操视频网站 | 国产欧美在线观看不卡 | 大肉大捧一进一出好爽动态图 | 欧美黄色短片 | 深夜福利麻豆 | 黄色福利视频 | 美女扒开尿口让男人爽 | 人人人草 | 自拍视频在线观看 | 桃花久久 | 4444亚洲人成无码网在线观看 | 综合激情婷婷 | 99久久99久久久精品棕色圆 | 久久久99精品免费观看 | 国产91免费视频 | 色婷久久| 亚洲尤物视频 | 欧美性视频播放 | 久久精品偷拍视频 | 成人免费在线视频观看 | av免费观看在线 | 亚洲欧美天堂 | 亚洲乱码日产精品bd在线观看 | 妓院一钑片免看黄大片 | 噼里啪啦免费看 | 尤物网站在线播放 | 亚洲精品成人久久 | 有色影院| 亚洲性图av| 黄色网页在线免费观看 | 销魂奶水汁系列小说 | 深夜影院在线观看 | 猫咪av在线 | 中文字幕黄色 | 无码一区二区三区免费视频 | 熟女人妇 成熟妇女系列视频 | 6996电视影片免费看 | 日本国产在线 | 就是色| 五月激情久久 | 欲求不满的岳中文字幕 | 五月开心播播网 | 亚洲成人婷婷 | 日本天堂影院 | 性网站在线观看 | 日本美女性生活视频 | 激情视频在线免费观看 | 国产五十路 | 女女互慰揉小黄文 | 欧美日韩a级 | 国产精品传媒麻豆hd | 污污免费视频 | 农村黄色片 | 日本黄视频网站 |