日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

UA OPTI501 电磁波 Lorentz Oscillator Model 4 Hilbet变换与Kramers-Konig关系式

發(fā)布時間:2025/4/14 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 UA OPTI501 电磁波 Lorentz Oscillator Model 4 Hilbet变换与Kramers-Konig关系式 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

UA OPTI501 電磁波 Lorentz Oscillator Model 4 Hilbet變換與Kramers-Konig關系式

    • 階梯響應與脈沖響應
    • Kramers-Konig關系式的推導

階梯響應與脈沖響應

我們之前用上圖所示質(zhì)點-彈簧系統(tǒng)研究了介電材料極化性質(zhì)的Lorentz模型,其中外部電場是簡諧振蕩的(Ex0cos?(wt))(E_{x0}\cos(wt))(Ex0?cos(wt)),但現(xiàn)在我們嘗試給這個質(zhì)點-彈簧系統(tǒng)施加階梯型或者脈沖型外部電場,并推導電極化矢量。

在介紹Lorentz模型時,我們推導出來了質(zhì)點-彈簧系統(tǒng)的振動方程為
x¨+γx˙+w02x=?qmE(t)\ddot{x}+\gamma \dot{x}+w_0^2 x=-\frac{q}{m}E(t)x¨+γx˙+w02?x=?mq?E(t)

左右兩邊同乘以?NqE^-Nq\hat E?NqE^可得
P¨+γP˙+w02P?介電材料的電極化=Nq2mE?外部電場\underbrace{\ddot{\textbf P}+\gamma \dot{\textbf P}+w_0^2 \textbf P}_{介電材料的電極化} = \underbrace{\frac{Nq^2}{m} \textbf E}_{外部電場}P¨+γP˙+w02?P??=mNq2?E??

這個式子說明外部電場作用下介電材料的電極化規(guī)律服從這個2階常系數(shù)向量常微分方程。

階梯響應
假設外部電場是一個階梯信號,E=E0step(t)x^\textbf E=E_0step(t)\hat xE=E0?step(t)x^,則上述方程的解被稱為階梯響應,

脈沖響應
假設外部電場是一個脈沖信號,E=E0δ(t)x^\textbf E=E_0\delta(t)\hat xE=E0?δ(t)x^,則上述方程的解被稱為脈沖響應,它的結(jié)果類似彈簧振子的阻尼振蕩。



并且P\textbf PP的Fourier變換為
F[P]=?0wp2E0w02?w2?iγw=?0E0C(w)\mathcal{F}[\textbf P]=\frac{\epsilon_0 w_p^2 E_0}{w_0^2-w^2-i \gamma w}=\epsilon_0 E_0C(w) F[P]=w02??w2?iγw?0?wp2?E0??=?0?E0?C(w)

計算過程如下圖

Kramers-Konig關系式的推導

Kramers-Konig關系式闡述的是electric susceptiblility χe(w)=χe′(w)+iχe′′(w)\chi_e(w)=\chi_e'(w)+i\chi''_e(w)χe?(w)=χe?(w)+iχe?(w)的實部與虛部之間的關系,經(jīng)推導發(fā)現(xiàn)χe′(w),χe′′(w)\chi_e'(w),\chi''_e(w)χe?(w),χe?(w)互為Hilbert變換,即
χe′(w)=2π∫0+∞νχ′′(ν)ν2?w2dνχe′′(w)=?2wπ∫0+∞χ′(ν)ν2?w2dν\chi'_e(w)=\frac{2}{\pi}\int_0^{+\infty}\frac{\nu \chi''(\nu)}{\nu^2-w^2}d\nu \\ \chi''_e(w)=-\frac{2w}{\pi}\int_0^{+\infty}\frac{\chi'(\nu)}{\nu^2-w^2}d\nuχe?(w)=π2?0+?ν2?w2νχ(ν)?dνχe?(w)=?π2w?0+?ν2?w2χ(ν)?dν

這個關系式被稱為克萊默-寇尼希關系式,它的物理基礎是外部電場與電極化之間的因果關系,在介電材料中,外部電場的存在是因,介電材料的電極化是果,不存在外部電場時,介電材料是無法自己激發(fā)出電極化的。

類似上文的脈沖響應與階梯響應,假設P(r,t)\textbf P(\textbf r,t)P(r,t)表示t>0t>0t>0后外部電場引致的電極化,定義
Po=P(r,t)?P(r,?t)2,Pe=P(r,t)+P(r,?t)2\textbf P_o=\frac{\textbf P(\textbf r,t)-\textbf P(\textbf r,-t)}{2},\textbf P_e=\frac{\textbf P(\textbf r,t)+\textbf P(\textbf r,-t)}{2}Po?=2P(r,t)?P(r,?t)?,Pe?=2P(r,t)+P(r,?t)?

二者之間滿足
Po=Pesign(t),Pe=Posign(t)\textbf P_o=\textbf P_esign(t),\textbf P_e=\textbf P_osign(t)Po?=Pe?sign(t),Pe?=Po?sign(t)

它們的Fourier變換為

我們也可以用卷積定理計算它們的Fourier變換:由于
根據(jù)卷積定理,

根據(jù)Fourier變換的唯一性,直接計算得到的Fourier變換與用卷積定理得到的相等,所以

總結(jié)

以上是生活随笔為你收集整理的UA OPTI501 电磁波 Lorentz Oscillator Model 4 Hilbet变换与Kramers-Konig关系式的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 巨胸爆乳美女露双奶头挤奶 | 性久久久久| 欧美一区二区高清视频 | 91喷水| 日本一二区视频 | 亚洲精品乱码久久久久久蜜桃动漫 | 天天操 夜夜操 | 夜间福利视频 | 蜜臀在线一区二区三区 | 久久久女人 | 亚洲片国产一区一级在线观看 | 一区在线视频 | 日本韩国欧美一区二区 | 欧美美女一级片 | 人人av在线 | 日日淫 | 免费黄色大片网站 | 天天干天天日夜夜操 | 午夜国产小视频 | 午夜一区在线观看 | 在线艹 | 亚洲综合图区 | 99精品一区二区三区 | 日本少妇激情 | 国产免费一区二区三区最新不卡 | 林由奈在线观看 | 亚洲网av| 国产手机看片 | 欧美性猛片aaaaaaa做受 | 日韩国产亚洲欧美 | 国产91视频播放 | 成人91看片 | 中文字幕91爱爱 | 欧美不卡网 | 日批视频免费观看 | 高清不卡av | 国产无码精品在线播放 | 99re9| 人妻熟妇又伦精品视频a | 泰坦尼克号3小时49分的观看方法 | 亚洲精品高潮 | 99精品视频免费 | 韩国一区在线 | 手机在线小视频 | 狠狠躁夜夜躁人人爽视频 | 美女野外找人搭讪啪啪 | 欧美不卡一二三 | 亚洲第一成人在线 | 台湾色综合 | 一本色道久久综合亚洲精品 | 欧美日韩网址 | www欧美精品 | 亚洲一本在线 | 亚洲美女一级片 | 毛片网站入口 | 欧美日韩一区二区精品 | 香蕉久久a毛片 | 999国产在线 | 国产精品欧美一区二区 | 国产又黄又猛又粗又爽 | 青娱乐国产视频 | 久久草av | 日韩一区二区三区电影 | 在线免费观看日韩 | 成年人在线播放视频 | 嫩草在线观看视频 | 曰韩一级片 | 国产一区二区精品在线观看 | 精品一区二区成人免费视频 | 亚洲第一精品在线观看 | 巨乳在线播放 | 真实新婚偷拍xxxxx | 成人欧美一区二区三区黑人 | 欧美两根一起进3p做受视频 | 毛片网在线 | 色婷婷视频在线观看 | 国产精品视频一二三区 | 波多野结衣一区二区三区高清av | 色屁屁影院www国产高清麻豆 | 欧美国产在线视频 | 人人爽人人爽人人爽人人爽 | 国产国语老龄妇女a片 | 国产精品成人av久久 | 国内精品999 | 欧美片一区二区三区 | 国产专区一区二区 | 亚洲综合免费观看高清完整版在线 | 狠狠干2021| 久久国产精品系列 | 国产精品免费电影 | 中文国产在线观看 | 免费看黄色aaaaaa 片 | 国产综合精品视频 | 97se.com| 久久精品国内 | www.污视频 | 找个毛片看看 | 蜜臀av一区二区三区 | 香蕉网伊 |