日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【Paper】2017_Limit-Cycle-Based Decoupled Design of Circle Formation Control with Collision Avoidance

發(fā)布時間:2025/4/5 编程问答 15 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【Paper】2017_Limit-Cycle-Based Decoupled Design of Circle Formation Control with Collision Avoidance 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

C. Wang and G. Xie, “Limit-Cycle-Based Decoupled Design of Circle Formation Control with Collision Avoidance for Anonymous Agents in a Plane,” in IEEE Transactions on Automatic Control, vol. 62, no. 12, pp. 6560-6567, Dec. 2017, doi: 10.1109/TAC.2017.2712758.

Each agent is described as a kinematic point

p˙i(t)=ui(t),i=1,2,?,N(2)\dot{p}_i(t) = u_i(t), \quad i = 1,2,\cdots,N \tag{2}p˙?i?(t)=ui?(t),i=1,2,?,N(2)

平面運動,因此 ui(t)∈R2u_i(t) \in \mathbb{R}^2ui?(t)R2

Controller consisting two parts
ui(t)=uip(t)fi(t),i=1,2,?,N(8)u_i(t) = u_i^p(t) f_i(t), \quad i = 1,2,\cdots,N \tag{8}ui?(t)=uip?(t)fi?(t),i=1,2,?,N(8)

Design the first part uip(t)u^p_i(t)uip?(t) in our controller as a limit-cycle oscillator

uip(t)=λ[γli(t)?11γli(t)]pˉi(t),i=1,2,?,Nu^p_i(t) = \lambda \left[\begin{matrix} \gamma l_i(t) & -1 \\ 1 & \gamma l_i(t) \end{matrix}\right]\bar{p}_i(t), \quad i = 1, 2, \cdots, Nuip?(t)=λ[γli?(t)1??1γli?(t)?]pˉ?i?(t),i=1,2,?,N

where λ>0,γ>0\lambda>0, \gamma > 0λ>0,γ>0 are constant, and
li(t)=r2?∥pˉi(t)∥2l_i(t) = r^2 - \|\bar{p}_i(t)\|^2li?(t)=r2?pˉ?i?(t)2

Angular control uiα(t)u^\alpha_i(t)uiα?(t) as
uiα(t)=di?di+di?α^i(t)u^\alpha_i(t) = \frac{d_{i^-}}{d_i + d_{i^-}} \hat{\alpha}_i(t)uiα?(t)=di?+di??di???α^i?(t)

fi(t)=c1+c22πuiα(t),i=1,2,?,Nf_i(t) = c_1 + \frac{c_2}{2\pi} u^\alpha_i(t), \quad i = 1,2,\cdots,Nfi?(t)=c1?+2πc2??uiα?(t),i=1,2,?,N

已知三邊求角度公式是余弦定理:cos?A=(b2+c2?a2)/2cb\cos A=(b^2+c^2-a^2)/2cbcosA=(b2+c2?a2)/2cb;cosB=(a平方+c平方-b平方)/2ac;cosC=(a平方+b平方-c平方)/2ab。


總結(jié)

以上是生活随笔為你收集整理的【Paper】2017_Limit-Cycle-Based Decoupled Design of Circle Formation Control with Collision Avoidance的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。