日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

2021-04-12 电机滑模控制 LuGre摩擦模型

發布時間:2025/3/21 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 2021-04-12 电机滑模控制 LuGre摩擦模型 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

電機滑模控制?LuGre摩擦模型

Simulation for A Sliding Mode Controller

?

Abstract: In this paper we first briefly introduce sliding mode controllers. Then we mainly study a sliding mode controller which has appeared in the literature. A simulation of the sliding mode controller is conducted in Matlab 6.5 environment, a corresponding PID controller also is done for comparsion.

?

1 Introduction

?

Variable structure control (VSC) with sliding mode control was first proposed and elaborated in the early 1950’s in the Soviet Union by Emelyanov and several coresearchers[2]. In their pioneer works, the plant considered was a linear second-order system modeled in phase variable form. Since then, VSC has developed into a general design method being examined for a

wide spectrum of system types including nonlinear systems, multi-input/multi-output systems, discrete-time models, large-scale and infinite-dimensional systems, and stochastic systems. In addition, the objectives of VSC has been greatly extended from stabilization to other control

functions. The most distinguished feature of VSC is its ability to result in very robust control systems; in many cases invariant control systems result. Loosely speaking, the term “invariant” means that the system is completely insensitive to parametric uncertainty and external disturbances. Today, research and development continue to apply VSC to a wide variety of engineering systems.

?

The main idea at the basis of SMC techniques is that of designing a sliding surface to which the controlled system trajectories must belong. On the sliding manifold the behaviour of the system is the expected one. In order to obtain the control aim a control must be designed with an authority sufficient to dominate the uncertainties and the disturbances acting on the system. The control

promptly reacts to any deviation, however small, from the prescribed behaviour steering the system back to the sliding manifold. An advantage of this approach is that the sliding behaviour is insensitive to model uncertainties and disturbances which do not steer the system outside from the chosen manifold.

?

In this paper, We mainly studied one sliding mode controller for position and speed control of flight simulator servo system with large friction which was proposed by Liu Jin kun and Er Lian jie in 2003[1]. Then we simulated the sliding mode controller and a PID controller (for comparision) in Matlab 6.5 environment.

?

2 Sliding Mode Controller design for position and speed control of flight simulator servo system with large friction[1]

???This part can refer to [1].


?
Reference

[1] Liu Jin kun and Er Lian jie, “Sliding Mode Controller Design for Position and Speed Control of Flight Simulator Servo System with Large Friction”, Journal of System Engineering and Electronics, Vol. 14, No. 3, pp. 59-62, 2003

[2] John Y. Hung, Weibing Gao, and James C. Hung, “Variable Structure Control: A Survey”, IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, February, 1993

[3] Liu Jin Kun, “Matlab Simulation for Sliding Mode Control”, BeiJing, Publishing House for TsingHua University, 2005
?

%%%%? Model.m %%%%function dx=Model(t,x)global A alfa J Ce R Km Ku a1 Fm Fc M kv c ep k delta persistent aa c=5.0; ep=30.6; k=30; a1=1.0; % Effect on the shape of friction curve Fm=20; Fc=15; kv=2.0; F=J*x(3); if t==0aa=0; enddF=J*aa; if abs(x(2))<=alfaif F>FmFf=Fm;dFf=0;elseif F<-FmFf=-Fm;dFf=0;elseFf=F;dFf=dF;end endif x(2)>alfaFf=Fc+(Fm-Fc)*exp(-a1*x(2))+kv*x(2);dFf=(Fm-Fc)*exp(-a1*x(2))*(-a1*x(3))+kv*x(3); elseif x(2)<-alfaFf=-Fc-(Fm-Fc)*exp(a1*x(2))+kv*x(2);dFf=-(Fm-Fc)*exp(a1*x(2))*(a1*x(3))+kv*x(3); endif x(2)>alfaFf=Fc+(Fm-Fc)*exp(-a1*x(2))+kv*x(2);dFf=(Fm-Fc)*exp(-a1*x(2))*(-a1*x(3))+kv*x(3); elseif x(2)<-alfaFf=-Fc-(Fm-Fc)*exp(a1*x(2))+kv*x(2);dFf=-(Fm-Fc)*exp(a1*x(2))*(a1*x(3))+kv*x(3); endA=1.0;F=1.0; r=A*sin(2*pi*F*t); dr=A*2*pi*F*cos(2*pi*F*t); ddr=-A*(2*pi*F)^2*sin(2*pi*F*t); e=r-x(1); de=dr-x(2); dde=ddr-x(3); s=c*e+de; M=2; if M==1u=200*(r-x(1))+40*(dr-x(2)); % PID elseif M==2delta=0.0003;kk=1/delta;if s>deltasats=1;elseif abs(s)<=delta % Saturated functionsats=kk*s;elseif s<-deltasats=-1;endslaw=-ep*sats-k*s;u=J*R/(Ku*Km)*(c*de+ddr+ep*sats+k*s+Km*Ce/(J*R)*x(2)+Ff/J); end du=200*de+40*dde; dx=zeros(3,1); dx(1)=x(2); dx(2)=-Km*Ce/(J*R)*x(2)+Ku*Km*u/(J*R)-Ff/J; dx(3)=-Km*Ce/(J*R)*x(3)+Ku*Km*du/(J*R)-dFf/J; aa=dx(3); % %%?? sim_smc.m?? %%%%%%%%% clear all; close all; global A alfa J Ce R Km Ku a1 Fm Fc M kv c ep k delta % Servo system Parameters J=0.6;Ce=1.2;Km=6; Ku=11;R=7.77; alfa=0.01; T=3.0; ts=0.001; % Sampling time TimeSet=[0:ts:T]; [t,x]=ode45('Model',TimeSet,[0,0,0],[],[]); x1=x(:,1); x2=x(:,2); x3=x(:,3);A=1.0;F=1.0; r=A*sin(2*pi*F*t); dr=A*2*pi*F*cos(2*pi*F*t); ddr=-A*(2*pi*F)^2*sin(2*pi*F*t); e=r-x1; de=dr-x2; s=c*e+de; F=J*x3; for i=1:1:T/ts+1time(i)=(i-1)*ts;if abs(x2(i))<=alfaif F(i)>FmFf(i)=Fm;elseif F(i)<-FmFf(i)=-Fm;elseFf(i)=F(i);endendif x2(i)>alfaFf(i)=Fc+(Fm-Fc)*exp(-a1*x2(i))+kv*x2(i);elseif x2(i)<-alfaFf(i)=-Fc-(Fm-Fc)*exp(a1*x2(i))+kv*x2(i);end endif M==1u=200*(r-x(1))+40*(dr-x(2)); % PID elseif M==2for i=1:1:T/ts+1kk=1/delta;if s(i)>deltasats(i)=1;elseif abs(s(i))<=delta % Saturated functionsats(i)=kk*s(i);elseif s(i)<-deltasats(i)=-1;endslaw(i)=-ep*sats(i)-k*s(i);u(i)=J*R/(Ku*Km)*(c*de(i)+ddr(i)+ep*sats(i)+k*s(i)+Km*Ce/(J*R)*x2(i)+Ff(i)/J);end endfigure(1); plot(t,r,'r',t,x(:,1),'b'); xlabel('time(s)');ylabel('position tracking'); figure(2); plot(t,dr,'r',t,x(:,2),'b'); xlabel('time(s)');ylabel('speed tracking'); figure(3) plot(t,e,'r'); xlabel('time(s)');ylabel('error'); figure(4); plot(x(:,2),Ff,'r'); xlabel('speed');ylabel('Friction'); figure(5); plot(t,s,'r'); xlabel('time(s)');ylabel('s'); figure(6); plot(time,u,'r'); xlabel('time(s)');ylabel('u'); figure(7); plot(r-x(:,1),dr-x(:,2),'r',r-x(:,1),-c*(r-x(:,1)),'b'); xlabel('e');ylabel('de');

?

總結

以上是生活随笔為你收集整理的2021-04-12 电机滑模控制 LuGre摩擦模型的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。