日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

GoogLeNet代码解读

發布時間:2025/3/15 编程问答 20 豆豆
生活随笔 收集整理的這篇文章主要介紹了 GoogLeNet代码解读 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

GoogLeNet代碼解讀

目錄

    • GoogLeNet代碼解讀
  • 概述
  • GooLeNet網絡結構圖
    • 1)從輸入到第一層inception
    • 2)從第2層inception到第4層inception
    • 3)從第5層inception到第7層inception
    • 4)從第8層inception到輸出
  • GooLeNet架構搭建
  • 代碼細節分析

概述

GooLeNet網絡結構圖

1)從輸入到第一層inception

2)從第2層inception到第4層inception

3)從第5層inception到第7層inception

4)從第8層inception到輸出

GooLeNet架構搭建

代碼細節分析

from collections import namedtuple import warnings import torch from torch import nn, Tensor import torch.nn.functional as F from .utils import load_state_dict_from_url from typing import Callable, Any, Optional, Tuple, List # 可供下載的googlenet預訓練模型名稱 __all__ = ['GoogLeNet','googlenet','GoogLeNetOutputs','_GoogLeNetOutputs'] # 預訓練權重下載 model_urls = {'googlenet':'https://download.pytorch.org/models/googlenet-1378be20.pth',} GoogLeNetOutputs = namedtuple('GoogLeNetOutputs',['logits','aux_logits2','aux_logits1']) GoogLeNetOutputs.__annotations__ = {'logits': Tensor, 'aux_logits2': Optional[Tensor],'aux_logits1': Optional[Tensor]} _GoogLeNetOutputs = GoogLeNetOutputsdef googlenet(pretrained = False, progress = True, **kwargs):if pretrained:if 'transform_input' not in kwargs:kwargs['transform_input'] = Trueif 'aux_logits' not in kwargs:kwargs['aux_logits'] = Falseif kwargs['aux_logits']:warnings.warn('auxiliary heads in the pretrained googlenet model are NOT pretrained, ''so make sure to train them')orginal_aux_logits = kwargs['aux_logits']kwargs['aux_logits'] = Truekwargs['init_weights'] = Falsemodel = GoogLeNet(**kwargs)# 下載googlenet模型并加載state_dict = load_state_dict_from_url(model_urls['googlenet'],progress = progress)model.load_state_dict(state_dict)if not original_aux_logits:model.aux_logits = Falsemodel.aux1 = Nonemodel.aux2 = Nonereturn modelreturn GoogLeNet(**kwargs)class GoogLeNet(nn.Module):__constants__ = ['aux_logits','transform_input']def __init__(self,num_classes = 1000,aux_logits = True,trandform_input = False,init_weights = None,blocks = None):super(GoogLeNet,self).__init__()if blocks is None:blocks = [BasicConv2d, Inception, InceptionAux]if init_weights is None:warnings.warn('The default weight initialization of GoogleNet will be changed in future releases of ''torchvision. If you wish to keep the old behavior (which leads to long initialization times'' due to scipy/scipy#11299), please set init_weights=True.', FutureWarning)init_weights = Trueassert len(blocks)==3conv_block = blocks[0]inception_block = blocks[1]inception_aux_block = blocks[2]self.aux_logits = aux_logitsself.transform_input = transform_input# 從輸入到第一層inception的卷積、池化處理self.conv1 = conv_block(3,64,kernel_size = 7, stride = 3, padding = 3)self.maxpool1 = nn.MaxPool2d(3,stride = 2, ceil_mode = True)self.conv2 = conv_block(64,64,kernel_size = 1)self.conv3 = conv_block(64,192,kernel_size = 3, padding = 1)self.maxpool2 = nn.MaxPool2d(3,stride = 2, ceil_mode = True)# 一系列的inception模塊self.inception3a = inception_block(192,64,96,128,16,32,32)self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128)# 輔助分類模塊if aux_logits:self.aux1 = inception_aux_block(512, num_classes)self.aux2 = inception_aux_block(528, num_classes)else:self.aux1 = None # type: ignore[assignment]self.aux2 = None # type: ignore[assignment]# 平均池化、dropout防止過擬合self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.dropout = nn.Dropout(0.2)self.fc = nn.Linear(1024, num_classes)if init_weights:self._initialize_weights()def _initialize_weights(self) -> None:# 初始化權重和偏置參數for m in self.modules():if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):import scipy.stats as statsX = stats.truncnorm(-2, 2, scale=0.01)values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)values = values.view(m.weight.size())with torch.no_grad():m.weight.copy_(values)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)# 給input增加一個維度并作中心化def _transform_input(self, x: Tensor) -> Tensor:if self.transform_input:x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5x = torch.cat((x_ch0, x_ch1, x_ch2), 1)return x# 構建googlenet網絡def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:# N x 3 x 224 x 224x = self.conv1(x)# N x 64 x 112 x 112x = self.maxpool1(x)# N x 64 x 56 x 56x = self.conv2(x)# N x 64 x 56 x 56x = self.conv3(x)# N x 192 x 56 x 56x = self.maxpool2(x)# N x 192 x 28 x 28x = self.inception3a(x)# N x 256 x 28 x 28x = self.inception3b(x)# N x 480 x 28 x 28x = self.maxpool3(x)# N x 480 x 14 x 14x = self.inception4a(x)# N x 512 x 14 x 14aux1: Optional[Tensor] = Noneif self.aux1 is not None:if self.training:aux1 = self.aux1(x)x = self.inception4b(x)# N x 512 x 14 x 14x = self.inception4c(x)# N x 512 x 14 x 14x = self.inception4d(x)# N x 528 x 14 x 14aux2: Optional[Tensor] = Noneif self.aux2 is not None:if self.training:aux2 = self.aux2(x)x = self.inception4e(x)# N x 832 x 14 x 14x = self.maxpool4(x)# N x 832 x 7 x 7x = self.inception5a(x)# N x 832 x 7 x 7x = self.inception5b(x)# N x 1024 x 7 x 7x = self.avgpool(x)# N x 1024 x 1 x 1x = torch.flatten(x, 1)# N x 1024x = self.dropout(x)x = self.fc(x)# N x 1000 (num_classes)return x, aux2, aux1@torch.jit.unuseddef eager_outputs(self, x: Tensor, aux2: Tensor, aux1: Optional[Tensor]) -> GoogLeNetOutputs:if self.training and self.aux_logits:return _GoogLeNetOutputs(x, aux2, aux1)else:return x # type: ignore[return-value]def forward(self, x: Tensor) -> GoogLeNetOutputs:x = self._transform_input(x)x, aux1, aux2 = self._forward(x)aux_defined = self.training and self.aux_logitsif torch.jit.is_scripting():if not aux_defined:warnings.warn("Scripted GoogleNet always returns GoogleNetOutputs Tuple")return GoogLeNetOutputs(x, aux2, aux1)else:return self.eager_outputs(x, aux2, aux1)# inception模塊 class Inception(nn.Module):def __init__(self,in_channels: int,ch1x1: int,ch3x3red: int,ch3x3: int,ch5x5red: int,ch5x5: int,pool_proj: int,conv_block: Optional[Callable[..., nn.Module]] = None) -> None:super(Inception, self).__init__()if conv_block is None:conv_block = BasicConv2dself.branch1 = conv_block(in_channels, ch1x1, kernel_size=1)self.branch2 = nn.Sequential(conv_block(in_channels, ch3x3red, kernel_size=1),conv_block(ch3x3red, ch3x3, kernel_size=3, padding=1))self.branch3 = nn.Sequential(conv_block(in_channels, ch5x5red, kernel_size=1),# Here, kernel_size=3 instead of kernel_size=5 is a known bug.# Please see https://github.com/pytorch/vision/issues/906 for details.conv_block(ch5x5red, ch5x5, kernel_size=3, padding=1))self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),conv_block(in_channels, pool_proj, kernel_size=1))def _forward(self, x: Tensor) -> List[Tensor]:branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)outputs = [branch1, branch2, branch3, branch4]return outputsdef forward(self, x: Tensor) -> Tensor:outputs = self._forward(x)return torch.cat(outputs, 1)# 輔助的inception模塊,用于分類 class InceptionAux(nn.Module):def __init__(self,in_channels: int,num_classes: int,conv_block: Optional[Callable[..., nn.Module]] = None) -> None:super(InceptionAux, self).__init__()if conv_block is None:conv_block = BasicConv2dself.conv = conv_block(in_channels, 128, kernel_size=1)self.fc1 = nn.Linear(2048, 1024)self.fc2 = nn.Linear(1024, num_classes)def forward(self, x: Tensor) -> Tensor:# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14x = F.adaptive_avg_pool2d(x, (4, 4))# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4x = self.conv(x)# N x 128 x 4 x 4x = torch.flatten(x, 1)# N x 2048x = F.relu(self.fc1(x), inplace=True)# N x 1024x = F.dropout(x, 0.7, training=self.training)# N x 1024x = self.fc2(x)# N x 1000 (num_classes)return x# 將卷積、bn、激活封裝成一個函數,其實這里不封裝也行,分成3步來寫 class BasicConv2d(nn.Module):def __init__(self,in_channels: int,out_channels: int,**kwargs: Any) -> None:super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)self.bn = nn.BatchNorm2d(out_channels, eps=0.001)def forward(self, x: Tensor) -> Tensor:x = self.conv(x)x = self.bn(x)return F.relu(x, inplace=True)

總結

以上是生活随笔為你收集整理的GoogLeNet代码解读的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 91精品小视频 | 致单身男女免费观看完整版 | 超碰伦理 | 一区二区三区人妻 | 亚洲精品国产精品乱码不卡√香蕉 | 风流僵尸艳片a级 | 日韩中文字幕视频在线观看 | 一级免费黄色大片 | 免费成人在线电影 | 99视频在线免费观看 | 中文字幕观看在线 | av网址在线免费观看 | 99精品欧美一区二区三区 | 日本在线一区二区三区 | 国产精品久久久久不卡 | 成人午夜免费毛片 | 色香蕉av | 亚洲欧美韩国 | 国产精品96久久久久久 | 91成人破解版 | 999精品免费视频 | 日韩欧美福利 | 国产精品va在线观看无码 | 成人无码精品1区2区3区免费看 | 欧美国产日韩综合 | 亚洲综合小说 | 在线日本视频 | 少妇被中出| 深爱激情五月婷婷 | 精品人妻一区二区三区香蕉 | 黑人巨大精品欧美一区免费视频 | 国产xxxx | 亚洲砖区区免费 | 97精品人妻麻豆一区二区 | 丰满熟妇肥白一区二区在线 | jizjiz中国少妇高潮水多 | 浪潮av色 | 99久久精品国产一区二区三区 | 欧美美女性高潮 | 日韩av色图| 国产精品美女www爽爽爽 | 亚洲视频第一页 | v片在线观看 | 水蜜桃av无码 | 欧美另类专区 | 欧美第一页浮力影院 | 啪啪福利社| 亚洲你我色 | 国产精品美女高潮无套 | 天天干,天天操,天天射 | 福利在线一区二区三区 | 91黄色免费网站 | 日韩精品v | jizz少妇 | 国产精选在线 | 午夜国产小视频 | 日韩精品第三页 | 神马午夜我不卡 | 精品午夜视频 | 在线国产毛片 | 天天在线免费视频 | 亚洲女优视频 | av不卡免费在线观看 | 果冻传媒18禁免费视频 | 欧美福利在线 | 久久久999精品视频 国产在线xx | 永久免费不卡在线观看黄网站 | 国产激情av在线 | 精品国产一级片 | 国产xxxx在线观看 | 色香五月| 欧美一级做a爰片久久高潮 久热国产精品视频 | 香蕉久热| 女性生殖扒开酷刑vk | 在线免费不卡视频 | 欧美成人精品一区二区免费看片 | 国产一区二区三区在线观看免费 | 性做久久久久久久 | jizz欧美大片 | 久久精品视频18 | 午夜操操| 国产传媒中文字幕 | 又黄又爽在线观看 | 亚洲欧洲精品视频 | 成人在线免费观看网址 | 国产精品爽爽爽 | 伊人逼逼| 天天舔天天插 | 亚洲一区精品视频 | 91精品国产福利在线观看 | 美女三级黄色片 | 男女拍拍拍网站 | 91在线精品一区二区 | 91丝袜呻吟高潮美腿白嫩在线观看 | 欧美色图一区二区 | 六月婷婷在线 | xxx毛片 | 青草视频在线 | 国语对白做受69按摩 |