日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

二维数据的白化处理

發布時間:2025/3/15 编程问答 15 豆豆
生活随笔 收集整理的這篇文章主要介紹了 二维数据的白化处理 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

二維數據的白化處理

這篇博客實現起來比較簡單,首先先去下載pca_2d.zip然后打開pca_2d.m改代碼,具體代碼見下面 close all


%%================================================================
%% Step 0: Load data
% ?We have provided the code to load data from pcaData.txt into x.
% ?x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to
% ?the kth data point.Here we provide the code to load natural image data into x.
% ?You do not need to change the code below.
%從txt文件里面加載數據,并畫出原始數據散點圖
x = load('pcaData.txt','-ascii');
figure(1);
scatter(x(1, :), x(2, :));
title('Raw data');




%%================================================================
%% Step 1a: Implement PCA to obtain U?
% ?Implement PCA to obtain the rotation matrix U, which is the eigenbasis
% ?sigma.?


% -------------------- YOUR CODE HERE --------------------?
%得到特征向量,u是特征向量,s是特征值,v是u'
u = zeros(size(x, 1)); % You need to compute this
[u,s,v]=svd(x);


% --------------------------------------------------------?
hold on
plot([0 u(1,1)], [0 u(2,1)]);
plot([0 u(1,2)], [0 u(2,2)]);
scatter(x(1, :), x(2, :));
hold off


%%================================================================
%% Step 1b: Compute xRot, the projection on to the eigenbasis
% ?Now, compute xRot by projecting the data on to the basis defined
% ?by U. Visualize the points by performing a scatter plot.


% -------------------- YOUR CODE HERE --------------------?
%計算出xRot
xRot = zeros(size(x)); % You need to compute this
xRot=u'*x;




% --------------------------------------------------------?


% Visualise the covariance matrix. You should see a line across the
% diagonal against a blue background.
figure(2);
scatter(xRot(1, :), xRot(2, :));
title('xRot');


%%================================================================
%% Step 2: Reduce the number of dimensions from 2 to 1.?
% ?Compute xRot again (this time projecting to 1 dimension).
% ?Then, compute xHat by projecting the xRot back onto the original axes?
% ?to see the effect of dimension reduction


% -------------------- YOUR CODE HERE --------------------?
%得到xHat,去除第二維向量
k = 1; % Use k = 1 and project the data onto the first eigenbasis
xHat = zeros(size(x)); % You need to compute this
xHat(1:k,:)=xRot(1:k,:);
xHat=u*xHat;




% --------------------------------------------------------?
figure(3);
scatter(xHat(1, :), xHat(2, :));
title('xHat');




%%================================================================
%% Step 3: PCA Whitening
% ?Complute xPCAWhite and plot the results.
%PCA白化處理,使用epsilon是為了正則化
epsilon = 1e-5;
% -------------------- YOUR CODE HERE --------------------?
xPCAWhite = zeros(size(x)); % You need to compute this
xPCAWhite = diag(1./sqrt(diag(s)+epsilon))*xRot;






% --------------------------------------------------------?
figure(4);
scatter(xPCAWhite(1, :), xPCAWhite(2, :));
title('xPCAWhite');


%%================================================================
%% Step 3: ZCA Whitening
% ?Complute xZCAWhite and plot the results.
%ZCA處理,使得結果更接近原始數據
% -------------------- YOUR CODE HERE --------------------?
xZCAWhite = zeros(size(x)); % You need to compute this
xZCAWhite = u*xPCAWhite;


% --------------------------------------------------------?
figure(5);
scatter(xZCAWhite(1, :), xZCAWhite(2, :));
title('xZCAWhite');


%% Congratulations! When you have reached this point, you are done!
% ?You can now move onto the next PCA exercise. :)
最終你會看到6張圖片

總結

以上是生活随笔為你收集整理的二维数据的白化处理的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。