2.1TF模型持久化
生活随笔
收集整理的這篇文章主要介紹了
2.1TF模型持久化
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
目前tf只能保存模型中的variable變量,整個模型還不能保存,版本1.x
保存模型代碼
import tensorflow as tf import numpy as np# Save to file # remember to define the same dtype and shape when restore v1 = tf.Variable(tf.constant(1.0,shape=[1]), name='v1') v2 = tf.Variable(tf.constant(2.0,shape=[1]), name='v2') result=v1+v2# tf.initialize_all_variables() no long valid from # 2017-03-02 if using tensorflow >= 0.12 if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:init = tf.initialize_all_variables() else:init = tf.global_variables_initializer()saver = tf.train.Saver()with tf.Session() as sess:sess.run(init)save_path = saver.save(sess,"save_model/save_pp.ckpt")print("Save to path: ", save_path)文件結構如下
還原模型代碼
################################################ # restore variables # redefine the same shape and same type for your variables v1 = tf.Variable(tf.constant(1.0,shape=[1]), name='v1') v2 = tf.Variable(tf.constant(2.0,shape=[1]), name='v2') result=v1+v2 # not need init step saver = tf.train.Saver() with tf.Session() as sess:saver.restore(sess, "./save_model/save_pp.ckpt")print("v:", sess.run(v1))print("result:", sess.run(result))報錯信息
未解決
轉載于:https://www.cnblogs.com/jackchen-Net/p/8119706.html
總結
以上是生活随笔為你收集整理的2.1TF模型持久化的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 洛谷P2502:[HAOI2006]旅行
- 下一篇: CNN中的卷积操作的参数数计算