日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

泛函分析——有界线性算子和函数

發布時間:2025/1/21 编程问答 16 豆豆
生活随笔 收集整理的這篇文章主要介紹了 泛函分析——有界线性算子和函数 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
  • 線性映射: Let XXX and YYY be linear spaces over the same field F\mathbb{F}F. A linear operator from XXX into YYY is a mapping T:X→YT: X \rightarrow YT:XY such that
  • T(αx1+βx2)=αTx1+βTx2T\left(\alpha x_{1}+\beta x_{2}\right)=\alpha T x_{1}+\beta T x_{2}T(αx1?+βx2?)=αTx1?+βTx2? for all x1,x2∈Xx_{1}, x_{2} \in Xx1?,x2?X and all α,β∈F\alpha, \beta \in \mathbb{F}α,βF

  • 線性算子T的值域
    ran?(T)={y∈Y∣y=Txfor?some?x∈X}=TX\operatorname{ran}(T)=\{y \in Y \mid y=T x \text { for some } x \in X\}=T Xran(T)={yYy=Tx?for?some?xX}=TX

  • 線性算子T的核空間
    N(T)=ker?(T)={x∈X:Tx=0}=T?1(0)\mathcal{N}(T)=\operatorname{ker}(T)=\{x \in X: T x=0\}=T^{-1}(0)N(T)=ker(T)={xX:Tx=0}=T?1(0)

  • 賦范線性空間中線性操作算子的有界
    Let XXX and YYY be normed linear spaces over the same field F\mathbb{F}F. A linear operator T:X→YT: X \rightarrow YT:XY is said to be bounded if there exists a constant M>0M>0M>0 such that
    ∥Tx∥≤M∥x∥for?all?x∈X.\|T x\| \leq M\|x\| \quad \text { for all } \quad x \in X . TxMx?for?all?xX.

  • 賦范線性空間中線性操作算子的連續
    An operator T:X→YT: X \rightarrow YT:XY is said to be continuous at x0∈Xx_{0} \in Xx0?X if given any ?>0\epsilon>0?>0 there is a δ>0\delta>0δ>0 such that
    ∥Tx?Tx0∥<?whenever?∥x?x0∥<δ.?\left\|T x-T x_{0}\right\|<\epsilon \quad \text { whenever }\left\|x-x_{0}\right\|<\delta \text { . } Tx?Tx0?<??whenever?x?x0?<δ?.?
    TTT is continuous on XXX if it is continuous at each point of XXX.

  • 算子范數
    Let XXX and YYY be normed linear spaces over the same field F\mathbb{F}F and let T∈B(X,Y)T \in \mathcal{B}(X, Y)TB(X,Y). The operator norm (or simply norm) of T,T,T, denoted by ∥T∥,\|T\|,T, is defined as
    ∥T∥=inf?{M:∥Tx∥≤M∥x∥,for?all?x∈X}\|T\|=\inf \{M:\|T x\| \leq M\|x\|, \quad \text { for all } x \in X\} T=inf{M:TxMx,?for?all?xX}

  • Since TTT is bounded, ∥T∥<∞\|T\|<\inftyT<. Furthermore,
    ∥Tx∥≤∥T∥∥x∥for?all?x∈X\|T x\| \leq\|T\|\|x\| \quad \text { for all } \quad x \in X TxTx?for?all?xX

  • 將算子組合運算,加法乘法運算。
  • 線性函數:A linear operator f:X→Ff: X \rightarrow \mathbb{F}f:XF is called a linear functional on X.X .X.
    如果一個線性函數的值域是復數集,那么它就是一個線性函數。
  • 總結

    以上是生活随笔為你收集整理的泛函分析——有界线性算子和函数的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。