日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > 目标检测 >内容正文

目标检测

目标检测算法

發布時間:2024/3/26 目标检测 108 豆豆
生活随笔 收集整理的這篇文章主要介紹了 目标检测算法 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

目標檢測算法

  • 一、目標檢測算法
  • 二、目標檢測算法存在的問題
  • 三、目標檢測算法的基本流程
  • 四、傳統的目標檢測算法
    • 1.Viola-Jones(VJ人臉檢測算法)
    • 2.HOG + SVM(行人檢測,使用Opencv實現)
    • 3.DPM(物體檢測)
    • 補充——NMS
  • 五、基于深度學習的目標檢測算法
    • 1.Two-Stage算法(段到段)
    • 2.One-Stage算法(端到端)
    • 3.對比

一、目標檢測算法

主流的目標檢測算法大致分為one-stage與two-stage。
two-stage算法代表有R-CNN系列,one-stage算法代表有Yolo系列。自己理解,two-stage算法將步驟一與步驟二分開執行,輸入圖像先經過候選框生成網絡(例如faster rcnn中的RPN網絡),再經過分類網絡,對候選框的內容進行分類;one-stage算法將步驟一與步驟二同時執行,輸入圖像只經過一個網絡,生成的結果中同時包含位置與類別信息。two-stage與one-stage相比,精度高,但是計算量更大,所以運算較慢。
簡單時間線:

目標檢測算法分類:

二、目標檢測算法存在的問題

1.目標種類與數量問題:同一幅圖下要識別的物體類別和數量可能同時存在多個,在要識別的目標密度非常大時就可能出現像相互遮擋的問題。
2.目標尺度問題:同一幅圖下同一類別的物體可能因為透視原理的印象,變得有大有小。尤其是有時候目標的大小可能會變得非常小。
3.外在環境干擾問題:由于光照等問題引起的圖片質量問題。
4.目標檢測和目標分割:目標識別、目標檢測、語義劃分、實例檢測

三、目標檢測算法的基本流程

候選框的選擇是依靠滑動窗口來選擇的。

四、傳統的目標檢測算法

1.Viola-Jones(VJ人臉檢測算法)

  • Haar特征抽取(Opencv中有這個特征提取包)
  • 訓練人臉分類器(Adaboost算法)
  • 滑動窗口選取候選框

2.HOG + SVM(行人檢測,使用Opencv實現)

  • 提取HOG特征
  • 訓練SVM分類器
    這里的SVM是二分類分類法。(我們會使用現成的包就好,不一定需要自己去實現,最好自己手動寫一下。)
    SVM又叫支持向量機,所謂支持向量正是圖中所畫的虛線上的點,他們對最后分類的結果影響較大。
  • 利用滑動窗口提取目標區域,進行分類判斷
  • NMS
  • 輸出檢測結果

3.DPM(物體檢測)

  • DPM特征提取

  • HOG的擴展
  • 使用SVM訓練得到物體的梯度

補充——NMS

五、基于深度學習的目標檢測算法

1.Two-Stage算法(段到段)

  • 使用各種CNN卷積神經網絡作為backbone主干網絡,進行特征提取
  • 然后進行一步粗分類(區分前景和后景)和粗定位(anchor),也就是說在上圖的“產生候選區域CNN特征”之前還應該有一個框“使用RPN網絡產生候選區CNN特征”
  • 段到段的目標檢測
  • 準確度高但速度較one-stage慢

2.One-Stage算法(端到端)

  • 使用CNN卷積特征
  • 直接回歸物體的類別概率和位置坐標值
  • 準確率低但速度快

3.對比

  • 雙階段精度高但速度慢,單精度速度快但精度稍遜。
  • 雙階段目標檢測器采用了兩段結構采樣來處理類別不均衡的問題(意思就是在同一張圖片中需要進行檢測的目標太少,不需要檢測的背景信息太多),一階段中:rpn使正負樣本更加均衡(先粗分類,區分前后景),再粗回歸,使用Anchor來擬合bbox,然后再二階段精調。
  • One stage detector 的一個通病就是既要做定位又要做classification。最后幾層1x1 conv layer的loss混在一起,并沒有什么專門做detection或者專門做bbox regression的參數,那每個參數的學習難度就大一點。
  • Two stage detector 的第一個stage相當于先拿一個one stage detector來做一次前景后景的classification + detection。這個任務比 one stage detector 的直接上手N class classification + detection要簡單很多。有了前景后景,就可以選擇性的挑選樣本使得正負樣本更加均衡,然后拿著一些參數重點訓練classification。訓練classification的難度也比直接做混合的classification和regression 簡單很多。
  • 雙階段其實就是把一個復雜的大問題拆分成更為簡單的小問題。各個參數有專攻,Two Stage Detector 在這個方面是有優勢的。但one stage detector 里如果用了 focal loss 和 separate detection/classification head 那效果跟 two stage detector 應該是一樣的。

總結

以上是生活随笔為你收集整理的目标检测算法的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。