日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

ALAD

發布時間:2024/3/12 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 ALAD 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Adversarially Learned Anomaly Detection

IEEE ICDM 2018
paper
code

研究動機(主要解決的問題)

1、developing effective methods for complex and high-dimensional data remains a challenge

對復雜的高維的數據難處理

2、The need to solve an optimization problem for every test example makes this method impractical on large datasets or for real-time applications

優點:effective, but also efficient at test time.

框架方法

Loss & Anomaly Score

loss
V(Dxz,Dxx,Dzz,E,G)=V(Dxz,E,G)+V(Dxx,E,G)+V(Dzz,E,G)\begin{array}{l}{V\left(D_{x z}, D_{x x}, D_{z z}, E, G\right) = \quad V\left(D_{x z}, E, G\right)+V\left(D_{x x}, E, G\right)+V\left(D_{z z}, E, G\right)}\end{array} V(Dxz?,Dxx?,Dzz?,E,G)=V(Dxz?,E,G)+V(Dxx?,E,G)+V(Dzz?,E,G)?

Anomaly Score
A(x)=∥fxx(x,x)?fxx(x,G(E(x)))∥1A(x)=\left\|f_{x x}(x, x)-f_{x x}(x, G(E(x)))\right\|_{1} A(x)=fxx?(x,x)?fxx?(x,G(E(x)))1?

A(x) 表示D的置信度,樣本是都被很好的encoder或者reconstructed by generator。值越大表示越異常。

實驗

數據集:

  • KDDCup99
  • Arrhythmia
  • 參數設置:

    KDDCup99 :20%的異常

    Arrhythmia :15%的異常

    use 80% of the whole official dataset for training and keep the remaining 20% as our test set.

    We further remove 25% from the training set for a validation set and discard anomalous samples from both training and validation sets (thus setting up a novelty detection task).

    評價方法:

    Precision, Recall, F1 score

    baselines:

  • One Class Support Vector Machines (OC-SVM)

    Support vector method for novelty detection 1999

  • Isolation Forests (IF)

    Isolation forest 2008

  • Deep Structured Energy Based Models (DSEBM)

    Deep structured energy based models for anomaly detection 2016

  • Deep Autoencoding Gaussian Mixture Model (DAGMM)

    Deep autoencoding gaussian mixture model for unsupervised anomaly detection 2018

  • AnoGAN

    Unsupervised anomaly detection with generative adversarial networks to guide marker discovery 2017

  • 實驗結果

    總結

    我們提出了一種基于GAN的異常檢測方法ALAD,它在訓練期間從數據空間到潛在空間學習編碼器,使得它在測試時比單獨發布的GAN方法更有效。 此外,我們還采用了額外的鑒別器來改進編碼器,以及已經發現可以穩定GAN訓練的頻譜歸一化。

    總結

    以上是生活随笔為你收集整理的ALAD的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。