日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

pytorch —— 正则化之weight_decay

發(fā)布時(shí)間:2023/12/16 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 pytorch —— 正则化之weight_decay 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

1、正則化與偏差-方差分解

1.1 Regularization

Regularization:減小方差的策略;

誤差可分解為偏差,方差與噪聲之和,即誤差=偏差+方差+噪聲之和;

偏差度量了學(xué)習(xí)算法的期望預(yù)測與真實(shí)結(jié)果的偏離程度,即刻畫了學(xué)習(xí)算法本身的擬合能力;

方差度量了同樣大小的訓(xùn)練集的變動(dòng)所導(dǎo)致的學(xué)習(xí)性能的變化,即刻畫了數(shù)據(jù)擾動(dòng)所造成的影響;

噪聲則表達(dá)了在當(dāng)前任務(wù)上任何學(xué)習(xí)算法所能達(dá)到的期望泛化誤差的下界;


下面通過一個(gè)線性回歸的例子理解方差和偏差的概念:

假如現(xiàn)在有一個(gè)一元線性回歸,如圖,訓(xùn)練集是藍(lán)色的點(diǎn),測試集是紅色的點(diǎn),假如有一個(gè)模型能夠很好地?cái)M合訓(xùn)練集,如下如所示:

但是該模型在測試集的效果比較差,這就是一個(gè)典型的高方差,也就是過擬合現(xiàn)象。正則化策略的目的就是降低方差,減小過擬合的發(fā)生。

下面了解一下降低過擬合的正則化策略,這里主要學(xué)習(xí)L1和L2正則化策略。

1.2 損失函數(shù)

損失函數(shù):衡量模型輸出與真實(shí)標(biāo)簽的差異

損失函數(shù):Loss=f(y^,y)Loss = f(\hat{y},y)Loss=f(y^?,y)代價(jià)函數(shù):Cost=1N∑iNf(y^i,yi)Cost=\frac{1}{N}\sum_{i}^Nf(\hat{y}_i,y_i)Cost=N1?iN?f(y^?i?,yi?)目標(biāo)函數(shù):Obj=Cost+RegularizationTermObj=Cost + Regularization \space\space TermObj=Cost+Regularization??Term

L1 Regularization Term:∑iN∣wi∣\sum_i^N|w_i|iN?wi?L2 Regularization Term:∑iN∣wi2∣\sum_i^N|w_i^2|iN?wi2?

在分析L!和L2正則化的時(shí)候,經(jīng)常看到下面這個(gè)圖:

左圖為L1正則化,右圖為L2正則化,圖中的彩色圓圈是損失函數(shù)的等高線,也就是公式中的cost,這里假設(shè)模型是一個(gè)二元模型,有兩個(gè)參數(shù)w1w_1w1?w2w_2w2?。左圖中的黑色矩陣表示正則化的等高線,右圖和左圖的圖形意義一樣。

1.3 L2 Regularization

L2 Regularization = weight decay(權(quán)重衰減)

目標(biāo)函數(shù)(Objective Function):Obj=Cost+RegularizationTermObj=Cost + Regularization \space\space TermObj=Cost+Regularization??Term假設(shè)目標(biāo)函數(shù)為Obj=Loss+λ2?∑iNwi2Obj = Loss + \frac{\lambda}{2}*\sum_i^Nw_i^2Obj=Loss+2λ??iN?wi2?權(quán)重更新公式為wi+1=wi??Obj?wi=wi??Loss?wiw_{i+1}=w_i - \frac{\partial Obj}{\partial w_i}=w_i-\frac{\partial Loss}{\partial w_i}wi+1?=wi???wi??Obj?=wi???wi??Loss?可以得到L2正則化的權(quán)重更新為wi+1=wi??Obj?wi=wi?(?Loss?wi+λ?wi)w_{i+1}=w_i - \frac{\partial Obj}{\partial w_i}=w_i-(\frac{\partial Loss}{\partial w_i}+\lambda*w_i)wi+1?=wi???wi??Obj?=wi??(?wi??Loss?+λ?wi?)公式化簡為wi+1=wi?(1?λ)??Loss?wiw_{i+1}=w_i*(1-\lambda) - \frac{\partial Loss}{\partial w_i}wi+1?=wi??(1?λ)??wi??Loss?因?yàn)楣街写嬖?span id="ozvdkddzhkzd" class="katex--inline">wi?(1?λ)w_i*(1-\lambda)wi??(1?λ),因此L2正則化也稱為權(quán)重衰減。

現(xiàn)在通過代碼看一下在一元線性模型上weight decay(L2正則化)的具體作用:

import torch import torch.nn as nn import matplotlib.pyplot as plt from common_tools import set_seed from torch.utils.tensorboard import SummaryWriterset_seed(1) # 設(shè)置隨機(jī)種子 n_hidden = 200 max_iter = 2000 disp_interval = 200 lr_init = 0.01# ============================ step 1/5 數(shù)據(jù) ============================ def gen_data(num_data=10, x_range=(-1, 1)):w = 1.5train_x = torch.linspace(*x_range, num_data).unsqueeze_(1)train_y = w*train_x + torch.normal(0, 0.5, size=train_x.size())test_x = torch.linspace(*x_range, num_data).unsqueeze_(1)test_y = w*test_x + torch.normal(0, 0.3, size=test_x.size())return train_x, train_y, test_x, test_ytrain_x, train_y, test_x, test_y = gen_data(x_range=(-1, 1))# ============================ step 2/5 模型 ============================ class MLP(nn.Module):def __init__(self, neural_num):super(MLP, self).__init__()self.linears = nn.Sequential(nn.Linear(1, neural_num),nn.ReLU(inplace=True),nn.Linear(neural_num, neural_num),nn.ReLU(inplace=True),nn.Linear(neural_num, neural_num),nn.ReLU(inplace=True),nn.Linear(neural_num, 1),)def forward(self, x):return self.linears(x)net_normal = MLP(neural_num=n_hidden) net_weight_decay = MLP(neural_num=n_hidden)# ============================ step 3/5 優(yōu)化器 ============================ optim_normal = torch.optim.SGD(net_normal.parameters(), lr=lr_init, momentum=0.9) optim_wdecay = torch.optim.SGD(net_weight_decay.parameters(), lr=lr_init, momentum=0.9, weight_decay=1e-2)# ============================ step 4/5 損失函數(shù) ============================ loss_func = torch.nn.MSELoss()# ============================ step 5/5 迭代訓(xùn)練 ============================writer = SummaryWriter(comment='_test_tensorboard', filename_suffix="12345678") for epoch in range(max_iter):# forwardpred_normal, pred_wdecay = net_normal(train_x), net_weight_decay(train_x)loss_normal, loss_wdecay = loss_func(pred_normal, train_y), loss_func(pred_wdecay, train_y)optim_normal.zero_grad()optim_wdecay.zero_grad()loss_normal.backward()loss_wdecay.backward()optim_normal.step()optim_wdecay.step()if (epoch+1) % disp_interval == 0:# 可視化for name, layer in net_normal.named_parameters():writer.add_histogram(name + '_grad_normal', layer.grad, epoch)writer.add_histogram(name + '_data_normal', layer, epoch)for name, layer in net_weight_decay.named_parameters():writer.add_histogram(name + '_grad_weight_decay', layer.grad, epoch)writer.add_histogram(name + '_data_weight_decay', layer, epoch)test_pred_normal, test_pred_wdecay = net_normal(test_x), net_weight_decay(test_x)# 繪圖plt.scatter(train_x.data.numpy(), train_y.data.numpy(), c='blue', s=50, alpha=0.3, label='train')plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='red', s=50, alpha=0.3, label='test')plt.plot(test_x.data.numpy(), test_pred_normal.data.numpy(), 'r-', lw=3, label='no weight decay')plt.plot(test_x.data.numpy(), test_pred_wdecay.data.numpy(), 'b--', lw=3, label='weight decay')plt.text(-0.25, -1.5, 'no weight decay loss={:.6f}'.format(loss_normal.item()), fontdict={'size': 15, 'color': 'red'})plt.text(-0.25, -2, 'weight decay loss={:.6f}'.format(loss_wdecay.item()), fontdict={'size': 15, 'color': 'red'})plt.ylim((-2.5, 2.5))plt.legend(loc='upper left')plt.title("Epoch: {}".format(epoch+1))plt.show()plt.close()

在Pytorch中,weight_decay是在優(yōu)化器中實(shí)現(xiàn)的,在代碼中構(gòu)建了兩個(gè)優(yōu)化器,一個(gè)優(yōu)化器不帶有正則化,一個(gè)優(yōu)化器帶有正則化。

代碼輸出的結(jié)果如下所示:

總結(jié)

以上是生活随笔為你收集整理的pytorch —— 正则化之weight_decay的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。