python编程的50种基础算法_Python入门教程:几种常见的Python算法实现
今天跟大家總結的Python學習教程關于Python算法的實現,上次催我更算法的伙伴可以粗來了!
1、選擇排序
選擇排序是一種簡單直觀的排序算法。它的原理是這樣:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再從剩余未排序元素中繼續尋找最小(大)元素,然后放到已排序序列的后面,以此類推,直到所有元素均排序完畢。算法實現如下:
#找到最小的元素def FindSmall(list):
min=list[0] for i in range(len(list)): if list[i]
min=list[i] return min
#選擇排序def Select_Sort(list):
newArr=[] for i in range(len(list)):
minValue=FindSmall(list)
newArr.append(minValue)
list.remove(minValue) return newArr
testArr=[11,22,33,21,123]print(Select_Sort(testArr))
2、快速排序
快速排序的運行速度快于選擇排序,它的工作原理是這樣:設要排序的數組是N,首先任意選取一個數據(通常選用數組的第一個數)作為關鍵數據,然后將所有比它小的數都放到它前面,所有比它大的數都放到它后面,這個過程稱為一趟快速排序??梢允褂胮ython用遞歸式的方法來解決這個問題:
def Quick_Sort(list): if len(list)<2: return list else:
temp=list[0]
less=[i for i in list[1:] if i<=temp]
more=[i for i in list[1:] if i>temp] return Quick_Sort(less)+[temp]+Quick_Sort(more)
testArr= [13,44,53,24,876,2]print(Quick_Sort(testArr))
3、二分查找
二分查找的輸入是一個有序的列表,如果要查找的元素包含在一個有序列表中,二分查找可以返回其位置。打個比方來說明二分查找的原理:比如我隨便想了個范圍在1~100以內的整數,由你來猜,以最少的次數來猜出這個數字,你每次猜完給出個數字,我會回復大了或小了,第一種方法是你從1開始依次往后猜,那如果我想的數字是100,那么你就要猜100次;第二種方法是從50開始,如果我說小了,那你就猜75,就這樣依次排除掉一半的剩余數字,這就是二分查找法。可以看出二分查找法更加快速。對于包含n個元素的有序列表,用簡單查找最多需要n步,而二分查找法則最多只需lon2 n步。下面用python來實現該算法:
def Item_Search(list,item):
low=0
high=len(list)-1 while low<=high:
middle=(low+high)//2 print(list[middle]) if list[middle]>item:
high=middle-1 elif list[middle]
low=middle+1 else: return middle return None
test_list=[1,3,5,7,9,11,13,15,17,19,21]
Item_Search(test_list,11)
4、廣度優先搜索
廣度優先搜索是一種圖算法,圖由節點和邊組成,一個節點可能與多個節點連接,這些節點稱為鄰居。廣度優先搜索算法可以解決兩類問題:第一類是從節點A出發,有沒有前往節點B的路徑;第二類問題是從節點A出發,前往B節點的哪條路徑最短。使用廣度優先搜索算法的前提是圖的邊沒有權值,即該算法只用于非加權圖中,如果圖的邊有權值的話就應使用狄克斯特拉算法來查找最短路徑。舉個例子,假如你認識alice、bob、claire,bob認識anuj、peggy,alice認識peggy,claire認識tom、jonny,你需要在最短的路徑內找到通過認識的人找到tom,那么算法實現如下:
#使用字典構建圖graph={}
graph["you"]=["Alice","Bob","Claire"]
graph["Bob"]=["Anuj","Peggy"]
graph["Alice"]=["Peggy"]
graph["Claire"]=["Tom","Jonny"]
graph["Anuj"]=[]
graph["Peggy"]=[]
graph["Tom"]=[]
graph["Jonny"]=[]from collections import deque#簡單的判斷方法def person_is_seller(name): return name=='Tom'def Search(name):
searched=[] #用于記錄檢查過的人,防止進入死循環
search_queue=deque() #創建隊列
search_queue+=graph[name] while search_queue:
person=search_queue.popleft() if not person in searched: #僅當這個人沒檢查過時才檢查
if person_is_seller(person): print("the seller is {0}".format(person)) return True else:
search_queue+=graph[person]
searched.append(person) #將這個人標記為檢查過
return Falseprint(Search("you"))
5、貪婪算法
貪婪算法,又名貪心算法,對于沒有快速算法的問題(NP完全問題),就只能選擇近似算法,貪婪算法尋找局部最優解,并企圖以這種方式獲得全局最優解,它易于實現、運行速度快,是一種不錯的近似算法。假如你是個小偷,商店里有很多箱子,箱子里有各種水果,有些箱子里有3種水果,有些箱子有2種...,你想嘗到所有種類的水果,但你一個人力氣有限,因此你必須盡量搬走最少的箱子,那么,算法實現如下:
fruits=set(["蘋果","香蕉","梨子","西瓜","草莓","橘子","荔枝","榴蓮"])
#箱子以及包含的水果box={}
box["b1"]=set(["蘋果","香蕉","西瓜"])
box["b2"]=set(["草莓","橘子","榴蓮"])
box["b3"]=set(["梨子","荔枝","草莓"])
box["b4"]=set(["香蕉","橘子"])
box["b5"]=set(["梨子","榴蓮"])
final_boxs=set() #最終選擇的箱子#直到fruits為空while fruits:
best_box=None #包含了最多的未包含水果的箱子
fruits_covered=set() #包含該箱子包含的所有未包含的水果
#循環迭代每個箱子,并確定它是否為最佳箱子
for boxItem,fruitItem in box.items():
covered=fruits & fruitItem #計算交集
if len(covered)>len(fruits_covered):
best_box=boxItem
fruits_covered=covered
fruits-=fruits_covered
final_boxs.add(best_box)
print(final_boxs)
伙伴們有補充的地方可以留言哈!感謝大家一致以來的支持!更多的Python入門教程會繼續跟大家更新!
總結
以上是生活随笔為你收集整理的python编程的50种基础算法_Python入门教程:几种常见的Python算法实现的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: flash作业_一起作业,你很智障!
- 下一篇: 只安装python_AI帮你写Pytho