日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

唐宇迪学习笔记17:支持向量机

發(fā)布時間:2023/12/10 编程问答 32 豆豆
生活随笔 收集整理的這篇文章主要介紹了 唐宇迪学习笔记17:支持向量机 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

目錄

一、支持向量機要解決的問題

Support Vector Machine

決策邊界

二、距離與數據定義

距離的計算

數據標簽

三、目標函數推導

優(yōu)化的目標

目標函數

四、拉格朗日乘子法求解

目標函數

拉格朗日乘子法

SVM求解

五、化簡最終目標函數

SVM求解

六、求解決策方程

SVM求解實例

七、軟間隔優(yōu)化

soft-margin

八、核函數的作用

低維不可分問題

舉例

九、知識點總結


一、支持向量機要解決的問題

Support Vector Machine

問題1:要解決的問題:什么樣的決策邊界才是最好的呢?

問題2:特征數據本身如果就很難分,怎么辦呢?

問題3:計算復雜度怎么樣?能實際應用嗎?

目標:基于上述問題對SVM進行推導

決策邊界

選出來離雷區(qū)最遠的(雷區(qū)就是邊界上的點,要Large Margin)

二、距離與數據定義

距離的計算

數據標簽

數據集:(X1,Y1)(X2,Y2)... (Xn,Yn)?

Y為樣本的類別: 當X為正例時候 Y = +1 當X為負例時候 Y = -1

決策方程: (其中是對數據做了變換)

? ? ? ? ? ? ? ?=>??? ? =>? ?

? ? ? ? ? ? ? ? ? ? ?

三、目標函數推導

優(yōu)化的目標

通俗解釋:找到一個條線(w和b),使得離該線最近的點(雷區(qū)) 能夠最遠

將點到直線的距離化簡得:

(由于所以將絕對值展開原始依舊成立)?

目標函數

放縮變換:對于決策方程(w,b)可以通過放縮使得其結果值|Y|>= 1
????????????????=> (之前我們認為恒大于0,現(xiàn)在嚴格了些)

優(yōu)化目標:
由于,只需要考慮 (目標函數搞定!)

四、拉格朗日乘子法求解

目標函數

當前目標: ,約束條件:

常規(guī)套路:將求解極大值問題轉換成極小值問題=>

如何求解:應用拉格朗日乘子法求解。

拉格朗日乘子法

帶約束的優(yōu)化問題:

原式轉換:

我們的式子:
(約束條件不要忘: )

SVM求解

分別對w和b求偏導,分別得到兩個條件(由于對偶性質)

對w求偏導:

?對b求偏導:

五、化簡最終目標函數

SVM求解

帶入原始:

?繼續(xù)對ɑ求極大值:

?????????????????條件:

極大值轉換成求極小值:條件:

六、求解決策方程

SVM求解實例

數據:3個點,其中正例 X1(3,3) ,X2(4,3) ,負例X3(1,1)

求解:

?約束條件:

?

?

分別對ɑ1和ɑ2求偏導,偏導等于0可得:

(并不滿足約束條件 ,所以解應在邊界上)

?最小值在(0.25,0,0.25)處取得。

?將ɑ結果帶入求解

平面方程為:

邊界點所有值不為0的數據點為支持向量。

非邊界點值必然為0?

支持向量:真正發(fā)揮作用的數據點,ɑ值不為0的點?。

七、軟間隔優(yōu)化

soft-margin

軟間隔:有時候數據中有一些噪音點,如果考慮它們咱們的線就不太好了。

之前方法要求要把兩類點完全分得開,這個要求有點過于嚴格,為了解決該問題,引入松弛因子:?

?

  • 新的目標函數

當C趨近于很大時:意味著分類嚴格不能有錯誤。

當C趨近于很小時:意味著可以有更大的錯誤容忍。

C是我們需要指定的一個參數!

  • ?拉格朗日乘子法:

八、核函數的作用

低維不可分問題

核變換:既然低維的時候不可分,那我給它映射到高維呢?

目標:找到一種變換的方法,也就是

舉例

九、知識點總結

高斯核函數:

????????????????

總結

以上是生活随笔為你收集整理的唐宇迪学习笔记17:支持向量机的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。