日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

colab配合谷歌云盘使用

發(fā)布時間:2023/12/10 编程问答 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 colab配合谷歌云盘使用 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

首先你得有一個谷歌賬號!!!
參考: https://zhuanlan.zhihu.com/p/149233850
https://blog.csdn.net/lumingha/article/details/104825702
1 將數(shù)據(jù)傳送至谷歌云盤(云盤地址:https://drive.google.com/drive/my-drive)
創(chuàng)建文件夾 上傳數(shù)據(jù)到stock_data

2 跳轉(zhuǎn)到colab(新建—>更多–> google Colaboratory)


3 掛載網(wǎng)盤+ 切換路徑

from google.colab import driveimport os# 掛載網(wǎng)盤drive.mount('/content/drive/') # 切換路徑os.chdir('/content/drive/MyDrive/rnn')


4. 查看文件

!ls -ll # 和linux終端用法差不多 但是!(感嘆號)不能少

5. 執(zhí)行代碼
我的代碼在本地是可以運行的
直接粘貼進去進行了,代碼如下(這里用的是py文件,最好使用ipy)

# -*- coding: utf-8 -*- import datetimeimport numpy as np import tensorflow as tf from tensorflow.keras.layers import Dropout, Dense, SimpleRNN import matplotlib.pyplot as plt import os import pandas as pd from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error, mean_absolute_error import math# 歸一化 sc = MinMaxScaler(feature_range=(0, 1)) # 定義歸一化:歸一化到(0,1)之間def get_stock_data(file_path):maotai = pd.read_csv(file_path)training_set = maotai.iloc[0:2426 - 300, 2:3].valuestest_set = maotai.iloc[2426 - 300:, 2:3].valuestraining_set_scaled = sc.fit_transform(training_set)test_set_scaled = sc.transform(test_set)x_train = []y_train = []for i in range(60, len(training_set_scaled)):x_train.append(training_set_scaled[i - 60:i, 0])y_train.append(training_set_scaled[i, 0])np.random.seed(7)np.random.shuffle(x_train)np.random.seed(7)np.random.shuffle(y_train)x_train = np.array(x_train)y_train = np.array(y_train)x_train = np.reshape(x_train, (x_train.shape[0], 60, 1))x_test = []y_test = []for i in range(60, len(test_set_scaled)):x_test.append(test_set_scaled[i - 60:i, 0])y_test.append(test_set_scaled[i, 0])x_test = np.array(x_test)y_test = np.array(y_test)x_test = np.reshape(x_test, (x_test.shape[0], 60, 1))return (x_train, y_train), (x_test, y_test)def load_local_model(model_path):if os.path.exists(model_path + '/saved_model.pb'):print(datetime.datetime.now())local_model = tf.keras.models.load_model(model_path)else:local_model = tf.keras.Sequential([SimpleRNN(80, return_sequences=True),Dropout(0.2),SimpleRNN(100),Dropout(0.2),Dense(1)])local_model.compile(optimizer=tf.keras.optimizers.Adam(0.001),loss='mean_squared_error') # 損失函數(shù)用均方誤差return local_modeldef show_train_line(history):loss = history.history['loss']val_loss = history.history['val_loss']plt.plot(loss, label='Training Loss')plt.plot(val_loss, label='Validation Loss')plt.title('Training and Validation Loss')plt.legend()plt.show()def stock_predict(model, x_test, y_test):# 測試集輸入模型進行預測predicted_stock_price = model.predict(x_test)# 對預測數(shù)據(jù)還原---從(0,1)反歸一化到原始范圍predicted_stock_price = sc.inverse_transform(predicted_stock_price)# 對真實數(shù)據(jù)還原---從(0,1)反歸一化到原始范圍real_stock_price = sc.inverse_transform(np.reshape(y_test, (y_test.shape[0], 1)))# 畫出真實數(shù)據(jù)和預測數(shù)據(jù)的對比曲線plt.plot(real_stock_price, color='red', label='MaoTai Stock Price')plt.plot(predicted_stock_price, color='blue', label='Predicted MaoTai Stock Price')plt.title('MaoTai Stock Price Prediction')plt.xlabel('Time')plt.ylabel('MaoTai Stock Price')plt.legend()plt.show()plt.savefig('./model/rnn/compare.jpg')mse = mean_squared_error(predicted_stock_price, real_stock_price)rmse = math.sqrt(mean_squared_error(predicted_stock_price, real_stock_price))mae = mean_absolute_error(predicted_stock_price, real_stock_price)print('均方誤差: %.6f' % mse)print('均方根誤差: %.6f' % rmse)print('平均絕對誤差: %.6f' % mae)if __name__ == '__main__':from google.colab import driveimport os# 掛載網(wǎng)盤drive.mount('/content/drive/')# 切換路徑os.chdir('/content/drive/MyDrive/rnn')'''# 查看當前路徑!pwd # 查看當前路徑下的文件夾 !ls -ll# 查看分配的機器!nvidia-smi '''file_path = './stock_data/SH600519.csv'(x_train, y_train), (x_test, y_test) = get_stock_data(file_path)model_path = "./model/rnn"model = load_local_model(model_path)history = model.fit(x_train, y_train, batch_size=64, epochs=100, validation_data=(x_test, y_test),validation_freq=1)show_train_line(history)model.summary()model.save(model_path, save_format="tf")stock_predict(model, x_test, y_test)

6.選擇gpu(代碼執(zhí)行程序–> 更改運行時類型–>硬件加速器選gpu)
查看當前分配的硬件 可以使用!nvidia-smi


執(zhí)行結(jié)果如下

只是用來演示,本案例中運行速度并不比本人筆記本快多少

總結(jié)

以上是生活随笔為你收集整理的colab配合谷歌云盘使用的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。