高级Linux程序设计第五章:进程间通信
From:?http://www.cnblogs.com/forfuture1978/archive/2010/04/29/1723417.html
-
五種進程間通信的方式:
-
共享內存(shared memory):其允許多個進程通過讀寫同一塊內存地址來相互通信。
-
內存映射(Mapped memory):其和共享內存相似,然而它是和文件系統上的一個文件相關聯的。
-
管道(Pipe):其允許一個進程到另一個相關進程的順序通信。
-
先入先出隊列(FIFO):和管道類似,然而因為其對應于文件系統上的文件名,可以在兩個不相關的進程間通信。
-
Socket:其允許在不同的計算機上的不同進程間通信。
-
1、共享內存(Shared Memory)
-
共享內存時進程間通信方式中最快的一種,因為進程是共享同一塊內存。
-
內核并不提供對共享內存訪問的同步機制,因而必須自己提供同步方式。
-
要用共享內存塊,需要一個進程首先分配此內存塊。
-
欲訪問共享內存塊的進程必須要連接到此內存塊。
-
在使用完共享內存塊的時候,進程必須要卸載此內存塊。
-
需要有一個進程釋放此內存塊。
-
所有的共享內存塊都是以4KB的整數倍分配。
?
1.1、分配
-
進程用函數shmget分配一個共享內存塊。
-
第一個參數是共享內存塊的key
-
不同的進程可以根據此key來訪問同一個共享內存塊。
-
使用IPC_PRIVATE作為key會保證創建一個新的共享內存塊。
-
如果多個進程訪問同一個共享內存塊,則必須用同一個key。
-
-
第二個參數表示內存塊的大小。
-
第三個參數是一系列標志位:
-
IPC_CREAT創建一個新的內存塊。
-
IPC_EXCL此標志位和IPC_CREAT一起使用。如果key已經存在,則此標志位使得shmget失敗。
-
-
1.2、連接(Attachment )和卸載(Detachment)
-
一個進程需要調用shmat來連接一個共享內存。
-
第一個參數是共享內存塊的id,由shmget返回。
-
第二個參數是一個指針,其指向共享內存塊映射的內存地址,如果是NULL,則系統會自動選擇一個可用的內存地址。
-
第三個參數是標志位:
-
SHM_RND表示第二個參數所指定的地址必須同頁的大小對齊。
-
SHM_RDONLY表示此內存塊只讀。
-
-
此函數返回值是連接的共享內存的起始地址。
-
-
共享內存塊可用函數shmdt卸載,應傳給它共享內存塊的起始地址。
-
調用exit及exec函數自動卸載共享內存塊。
?
1.3、控制和釋放共享內存塊
-
shmctl函數可用返回和修改共享內存塊的信息。
-
第一個參數是共享內存塊id
-
欲得到一個共享內存塊的信息,第二個參數設為IPC_STAT,第三個參數是指向shmid_ds結構體的指針。
-
欲刪除一個共享內存塊,第二個參數設為IPC_RMID,第三個參數設為NULL。
-
-
一個共享內存塊在使用結束后,必須用shmctl顯式的釋放。
-
調用exit和exec自動卸載共享內存塊,但是不釋放。
| #include <stdio.h> #include <sys/shm.h> #include <sys/stat.h> int main () { ??? int segment_id; ??? char* shared_memory; ??? struct shmid_ds shmbuffer; ??? int segment_size; ??? const int shared_segment_size = 0x6400; ??? /* Allocate a shared memory segment. */ ??? segment_id = shmget (IPC_PRIVATE, shared_segment_size, IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR); ??? /* Attach the shared memory segment. */ ??? shared_memory = (char*) shmat (segment_id, 0, 0); ??? printf (“shared memory attached at address %p\n”, shared_memory); ??? /* Determine the segment’s size. */ ??? shmctl (segment_id, IPC_STAT, &shmbuffer); ??? segment_size = shmbuffer.shm_segsz; ??? printf (“segment size: %d\n”, segment_size); ??? /* Write a string to the shared memory segment. */ ??? sprintf (shared_memory, “Hello, world.”); ??? /* Detach the shared memory segment. */ ??? shmdt (shared_memory); ??? /* Reattach the shared memory segment, at a different address. */ ??? shared_memory = (char*) shmat (segment_id, (void*) 0x5000000, 0); ??? printf (“shared memory reattached at address %p\n”, shared_memory); ??? /* Print out the string from shared memory. */ ??? printf (“%s\n”, shared_memory); ??? /* Detach the shared memory segment. */ ??? shmdt (shared_memory); ??? /* Deallocate the shared memory segment. */ ??? shmctl (segment_id, IPC_RMID, 0); ??? return 0; }? ? ipcs命令可用查看進程間通信機制的信息 使用-m可查看共享內存的信息 % ipcs -m ------ Shared Memory Segments -------- key shmid owner perms bytes nattch status 0x00000000 1627649 user 640 25600 0 ipcrm命令可刪除進程間通信對象. % ipcrm shm 1627649 [liuchao@localhost ~]$ ipcs ------ Shared Memory Segments -------- key shmid owner perms bytes nattch status 0x00000000 196608 liuchao 600 393216 2 dest 0x764867bd 65537 liuchao 600 1 0 0x2c0056d5 98306 liuchao 600 1 0 0x500e7827 131075 liuchao 600 1 0 0x20e0f21d 163844 liuchao 600 1 0 0x00000000 229381 liuchao 600 393216 2 dest 0x00000000 262150 liuchao 600 393216 2 dest 0x00000000 294919 liuchao 600 393216 2 dest 0x00000000 327688 liuchao 600 393216 2 dest 0x00000000 360457 liuchao 600 393216 2 dest 0x00000000 393226 liuchao 600 393216 2 dest 0x00000000 425995 liuchao 600 393216 2 dest 0x00000000 458764 liuchao 600 393216 2 dest 0x00000000 491533 liuchao 600 393216 2 dest 0x00000000 557070 liuchao 600 393216 2 dest 0x00000000 589839 liuchao 600 393216 2 dest ------ Semaphore Arrays -------- key semid owner perms nsems 0x59d9bc4a 0 liuchao 600 1 0x3bd464f2 32769 liuchao 600 1 ------ Message Queues -------- key msqid owner perms used-bytes messages |
?
2、進程信號量
2.1、分配(Allocation)和釋放(Deallocation)
-
調用semget分配一個信號量,調用semctl來釋放一個信號量。
-
semget的參數為一個信號量集的key,信號量集中的信號量的個數,權限標志位,返回值為信號量集id。
-
semctl的參數為信號量集的id,信號量集中的信號量的個數,IPC_RMID。
-
當所有的使用信號量的進程結束后,信號量仍然存在。
-
最后一個使用信號量集的進程必須顯式的刪除它。
| #include <sys/ipc.h> #include <sys/sem.h> #include <sys/types.h> /* We must define union semun ourselves. */ union semun { ??? int val; ??? struct semid_ds *buf; ??? unsigned short int *array; ??? struct seminfo *__buf; }; /* Obtain a binary semaphore’s ID, allocating if necessary. */ int binary_semaphore_allocation (key_t key, int sem_flags) { ??? return semget (key, 1, sem_flags); } /* Deallocate a binary semaphore. All users must have finished their use. Returns -1 on failure. */ int binary_semaphore_deallocate (int semid) { ??? union semun ignored_argument; ??? return semctl (semid, 1, IPC_RMID, ignored_argument); } |
2.2、初始化信號量
| #include <sys/types.h> #include <sys/ipc.h> #include <sys/sem.h> /* We must define union semun ourselves. */ union semun { ??? int val; ??? struct semid_ds *buf; ??? unsigned short int *array; ??? struct seminfo *__buf; }; /* Initialize a binary semaphore with a value of 1. */ int binary_semaphore_initialize (int semid) { ??? union semun argument; ??? unsigned short values[1]; ??? values[0] = 1; ??? argument.array = values; ??? return semctl (semid, 0, SETALL, argument); } |
?
2.3、Wait和Post操作
-
semop函數支持wait和post操作。
-
第一個參數是信號量集id。
-
第二個參數是一個sembuf結構體的數組。
-
第三個參數是數組的長度。
-
-
sembuf結構體:
-
sem_num是信號量集中作為操作對象的信號量的號。
-
sem_op表示對信號量的操作。如果sem_op是正數,則其將被加到信號量的值上。如果sem_op是負數,則得到其絕對值,如果此值能夠使得信號量的值為負,則阻塞當前線程,直到此信號量的值等于sem_op的絕對值。如果sem_op為零,阻塞當前線程,直到信號量的值為零。
-
sem_flg是標志位,IPC_NOWAIT使得此操作不會被阻塞,SEM_UNDO表示當進程結束的時候,系統自動取消此次操作。
-
| #include <sys/types.h> #include <sys/ipc.h> #include <sys/sem.h> /* Wait on a binary semaphore. Block until the semaphore value is positive, then decrement it by 1. */ int binary_semaphore_wait (int semid) { ??? struct sembuf operations[1]; ??? /* Use the first (and only) semaphore. */ ??? operations[0].sem_num = 0; ??? /* Decrement by 1. */ ??? operations[0].sem_op = -1; ??? /* Permit undo’ing. */ ??? operations[0].sem_flg = SEM_UNDO; ??? return semop (semid, operations, 1); } /* Post to a binary semaphore: increment its value by 1. This returns immediately. */ int binary_semaphore_post (int semid) { ??? struct sembuf operations[1]; ??? /* Use the first (and only) semaphore. */ ??? operations[0].sem_num = 0; ??? /* Increment by 1. */ ??? operations[0].sem_op = 1; ??? /* Permit undo’ing. */ ??? operations[0].sem_flg = SEM_UNDO; ??? return semop (semid, operations, 1); } |
?
3、內存映射(Mapped Memory)
3.1、映射一個普通文件
-
使用mmap函數可將一個普通文件映射到進程內存中。
-
第一個參數是文件將映射到的內存地址,NULL使得Linux自動選擇一個可用的地址。
-
第二個參數是映射的長度。
-
第三個參數是映射的內存的保護模式:PROT_READ,PROT_WRITE,PROT_EXEC。
-
第四個參數是一個標志位:
-
MAP_FIXED表示映射的內存地址必須和頁對齊。
-
MAP_PRIVATE表示寫入映射的內存的數據不會寫入關聯的文件,而是寫入另一個文件副本,對其他線程不可見。
-
MAP_SHARED表示寫入映射的內存的數據會立即寫入關聯的文件,不會有緩存。
-
-
第五個參數是關聯文件的文件描述符。
-
第六個參數是映射的文件的偏移量。
-
| (mmap-write.c) Write a Random Number to a Memory-Mapped File #include <stdlib.h> #include <stdio.h> #include <fcntl.h> #include <sys/mman.h> #include <sys/stat.h> #include <time.h> #include <unistd.h> #define FILE_LENGTH 0x100 /* Return a uniformly random number in the range [low,high]. */ int random_range (unsigned const low, unsigned const high) { ??? unsigned const range = high - low + 1; ??? return low + (int) (((double) range) * rand () / (RAND_MAX + 1.0)); } int main (int argc, char* const argv[]) { ??? int fd; ??? void* file_memory; ??? /* Seed the random number generator. */ ??? srand (time (NULL)); ??? /* Prepare a file large enough to hold an unsigned integer. */ ??? fd = open (argv[1], O_RDWR | O_CREAT, S_IRUSR | S_IWUSR); ??? lseek (fd, FILE_LENGTH+1, SEEK_SET); ??? write (fd, “”, 1); ??? lseek (fd, 0, SEEK_SET); ??? /* Create the memory mapping. */ ??? file_memory = mmap (0, FILE_LENGTH, PROT_WRITE, MAP_SHARED, fd, 0); ??? close (fd); ??? /* Write a random integer to memory-mapped area. */ ??? sprintf((char*) file_memory, “%d\n”, random_range (-100, 100)); ??? /* Release the memory (unnecessary because the program exits). */ ??? munmap (file_memory, FILE_LENGTH); ??? return 0; } (mmap-read.c) Read an Integer from a Memory-Mapped File, and Double It #include <stdlib.h> #include <stdio.h> #include <fcntl.h> #include <sys/mman.h> #include <sys/stat.h> #include <unistd.h> #define FILE_LENGTH 0x100 int main (int argc, char* const argv[]) { ??? int fd; ??? void* file_memory; ??? int integer; ??? /* Open the file. */ ??? fd = open (argv[1], O_RDWR, S_IRUSR | S_IWUSR); ??? /* Create the memory mapping. */ ??? file_memory = mmap (0, FILE_LENGTH, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); ??? close (fd); ??? /* Read the integer, print it out, and double it. */ ??? sscanf (file_memory, “%d”, &integer); ??? printf (“value: %d\n”, integer); ??? sprintf ((char*) file_memory, “%d\n”, 2 * integer); ??? /* Release the memory (unnecessary because the program exits). */ ??? munmap (file_memory, FILE_LENGTH); ??? return 0; } |
3.2、共同訪問一個文件
-
不同的進程可以通過將同一個文件映射到內存來通信。
-
設置MAP_SHARD使得寫入到映射的內存的數據會立即寫入關聯的文件,并對另一個文件可見。
-
如果不做以上設定,則Linux會對數據進行緩存,可以用函數msync將緩存寫入文件。
-
前兩個參數表示映射的內存塊。
-
第三個參數是標志位:
-
MS_ASTYNC:寫緩存并不立即執行。
-
MS_SYNC:寫緩存立即執行。
-
MS_INVALIDATE:所有的文件映射都被刷新,可以看到最新的更新。
-
-
msync (mem_addr, mem_length, MS_SYNC | MS_INVALIDATE);
-
設置MAP_PRIVATE將創建一個寫即復制的映射區。寫入這些映射區的數據僅僅在當前進程可見,對其他進程不可見。
4、管道(Pipes)
4.1、創建管道
| int pipe_fds[2]; int read_fd; int write_fd; pipe (pipe_fds); read_fd = pipe_fds[0]; write_fd = pipe_fds[1]; |
4.2、用管道來進行子進程和父進程之間的通信
| #include <stdlib.h> #include <stdio.h> #include <unistd.h> /* Write COUNT copies of MESSAGE to STREAM, pausing for a second between each. */ void writer (const char* message, int count, FILE* stream) { ??? for (; count > 0; --count) { ??????? /* Write the message to the stream, and send it off immediately. */ ??????? fprintf (stream, “%s\n”, message); ??????? fflush (stream); ??????? /* Snooze a while. */ ??????? sleep (1); ??? } } /* Read random strings from the stream as long as possible. */ void reader (FILE* stream) { ??? char buffer[1024]; ??? /* Read until we hit the end of the stream. fgets reads until either a newline or the end-of-file. */ ??? while (!feof (stream) && !ferror (stream) && fgets (buffer, sizeof (buffer), stream) != NULL) ??????? fputs (buffer, stdout); } int main () { ??? int fds[2]; ??? pid_t pid; ??? /* Create a pipe. File descriptors for the two ends of the pipe are placed in fds. */ ??? pipe (fds); ??? /* Fork a child process. */ ??? pid = fork (); ??? if (pid == (pid_t) 0) { ??????? FILE* stream; ??????? /* This is the child process. Close our copy of the write end of the file descriptor. */ ??????? close (fds[1]); ??????? /* Convert the read file descriptor to a FILE object, and read from it. */ ??????? stream = fdopen (fds[0], “r”); ??????? reader (stream); ??????? close (fds[0]); ??? } ??? else { ??????? /* This is the parent process. */ ??????? FILE* stream; ??????? /* Close our copy of the read end of the file descriptor. */ ??????? close (fds[0]); ??????? /* Convert the write file descriptor to a FILE object, and write to it. */ ??????? stream = fdopen (fds[1], “w”); ??????? writer (“Hello, world.”, 5, stream); ??????? close (fds[1]); ??? } ??? return 0; } |
4.3、用管道重定向標準輸入,標準輸出,錯誤流。
| #include <stdio.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> int main () { ??? int fds[2]; ??? pid_t pid; ??? /* Create a pipe. File descriptors for the two ends of the pipe are placed in fds. */ ??? pipe (fds); ??? /* Fork a child process. */ ??? pid = fork (); ??? if (pid == (pid_t) 0) { ??????? /* This is the child process. Close our copy of the write end of the file descriptor. */ ??????? close (fds[1]); ??????? /* Connect the read end of the pipe to standard input. */ ??????? dup2 (fds[0], STDIN_FILENO); ??????? /* Replace the child process with the “sort” program. */ ??????? execlp (“sort”, “sort”, 0); ??? } ??? else { ??????? /* This is the parent process. */ ??????? FILE* stream; ??????? /* Close our copy of the read end of the file descriptor. */ ??????? close (fds[0]); ??????? /* Convert the write file descriptor to a FILE object, and write to it. */ ??????? stream = fdopen (fds[1], “w”); ??????? fprintf (stream, “This is a test.\n”); ??????? fprintf (stream, “Hello, world.\n”); ??????? fprintf (stream, “My dog has fleas.\n”); ??????? fprintf (stream, “This program is great.\n”); ??????? fprintf (stream, “One fish, two fish.\n”); ??????? fflush (stream); ??????? close (fds[1]); ??????? /* Wait for the child process to finish. */ ??????? waitpid (pid, NULL, 0); ?? } ?? return 0; } |
4.4、打開(popen)和關閉(pclose)管道
| #include <stdio.h> #include <unistd.h> int main () { ??? FILE* stream = popen (“sort”, “w”); ??? fprintf (stream, “This is a test.\n”); ??? fprintf (stream, “Hello, world.\n”); ??? fprintf (stream, “My dog has fleas.\n”); ??? fprintf (stream, “This program is great.\n”); ??? fprintf (stream, “One fish, two fish.\n”); ??? return pclose (stream); } |
4.5、先進先出隊列(FIFOs)
-
一個先進先出隊列是一個管道,只不過在文件系統中有文件名與之對應。
-
FIFOs又被稱為命名管道。
-
mkfifo命令可以創建一個FIFO
?
| % mkfifo /tmp/fifo % ls -l /tmp/fifo prw-rw-rw- 1 samuel users 0 Jan 16 14:04 /tmp/fifo |
-
mkfifo函數可以創建一個FIFO
-
第一個參數是文件系統中的路徑。
-
第二個參數是權限。
-
訪問FIFO和訪問一個普通文件相同。
-
如果兩個進程通過FIFO進行通信,則需要一個進程打開一個FIFO用于寫,另一個進程打開同一個FIFO用于讀。
5、套接字(Sockets)
-
創建一個套接字:
-
命名空間:PF_LOCAL和PF_UNIX表示本地命名空間,PF_INET表示互聯網命名空間。
-
通信方式:SOCK_STREAM表示面向連接的套接字,SOCK_DGRAM表示面向數據報的套接字。
-
-
關閉套接字:close
-
連接套接字:欲在客戶端和服務器段建立連接,客戶端調用connect,指向服務器的地址,服務器端等待accept連接。
-
綁定套接字:bind,將套接字綁定到一個地址。
-
監聽套接字:listen,使得服務器監聽一個端口,等待accept一個連接。
-
接受套接字:accept,接受一個來自客戶端的連接。
?
5.1、本地命名空間套接字
訪問同一臺機器的套接字可以使用本地命名空間:PF_LOCAL和PF_UNIX
| (socket-server.c) Local Namespace Socket Server #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/socket.h> #include <sys/un.h> #include <unistd.h> /* Read text from the socket and print it out. Continue until the socket closes. Return nonzero if the client sent a “quit” message, zero otherwise. */ int server (int client_socket) { ??? while (1) { ??????? int length; ??????? char* text; ??????? /* First, read the length of the text message from the socket. If read returns zero, the client closed the connection. */ ??????? if (read (client_socket, &length, sizeof (length)) == 0) ??????????? return 0; ??????? /* Allocate a buffer to hold the text. */ ??????? text = (char*) malloc (length); ??????? /* Read the text itself, and print it. */ ??????? read (client_socket, text, length); ??????? printf (“%s\n”, text); ??????? /* Free the buffer. */ ??????? free (text); ??????? /* If the client sent the message “quit,” we’re all done. */ ??????? if (!strcmp (text, “quit”)) ??????????? return 1; ??? } } int main (int argc, char* const argv[]) { ??? const char* const socket_name = argv[1]; ??? int socket_fd; ??? struct sockaddr_un name; ??? int client_sent_quit_message; ??? /* Create the socket. */ ??? socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0); ??? /* Indicate that this is a server. */ ??? name.sun_family = AF_LOCAL; ??? strcpy (name.sun_path, socket_name); ??? bind (socket_fd, &name, SUN_LEN (&name)); ??? /* Listen for connections. */ ??? listen (socket_fd, 5); ??? /* Repeatedly accept connections, spinning off one server() to deal with each client. Continue until a client sends a “quit” message. */ ??? do { ??????? struct sockaddr_un client_name; ??????? socklen_t client_name_len; ??????? int client_socket_fd; ??????? /* Accept a connection. */ ??????? client_socket_fd = accept (socket_fd, &client_name, &client_name_len); ??????? /* Handle the connection. */ ??????? client_sent_quit_message = server (client_socket_fd); ??????? /* Close our end of the connection. */ ??????? close (client_socket_fd); ??? } while (!client_sent_quit_message); ??? /* Remove the socket file. */ ??? close (socket_fd); ??? unlink (socket_name); ??? return 0; } (socket-client.c) Local Namespace Socket Client #include <stdio.h> #include <string.h> #include <sys/socket.h> #include <sys/un.h> #include <unistd.h> /* Write TEXT to the socket given by file descriptor SOCKET_FD. */ void write_text (int socket_fd, const char* text) { ??? /* Write the number of bytes in the string, including NUL-termination. */ ??? int length = strlen (text) + 1; ??? write (socket_fd, &length, sizeof (length)); ??? /* Write the string. */ ??? write (socket_fd, text, length); } int main (int argc, char* const argv[]) { ??? const char* const socket_name = argv[1]; ??? const char* const message = argv[2]; ??? int socket_fd; ??? struct sockaddr_un name; ??? /* Create the socket. */ ??? socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0); ??? /* Store the server’s name in the socket address. */ ??? name.sun_family = AF_LOCAL; ??? strcpy (name.sun_path, socket_name); ??? /* Connect the socket. */ ??? connect (socket_fd, &name, SUN_LEN (&name)); ??? /* Write the text on the command line to the socket. */ ??? write_text (socket_fd, message); ??? close (socket_fd); ??? return 0; } |
?
5.2、互聯網套接字
| (socket-inet.c) Read from a WWW Server #include <stdlib.h> #include <stdio.h> #include <netinet/in.h> #include <netdb.h> #include <sys/socket.h> #include <unistd.h> #include <string.h> /* Print the contents of the home page for the server’s socket. Return an indication of success. */ void get_home_page (int socket_fd) { ??? char buffer[10000]; ??? ssize_t number_characters_read; ??? /* Send the HTTP GET command for the home page. */ ??? sprintf (buffer, “GET /\n”); ??? write (socket_fd, buffer, strlen (buffer)); ??? /* Read from the socket. The call to read may not ??? return all the data at one time, so keep trying until we run out. */ ??? while (1) { ??????? number_characters_read = read (socket_fd, buffer, 10000); ??????? if (number_characters_read == 0) ??????????? return; ??????? /* Write the data to standard output. */ ??????? fwrite (buffer, sizeof (char), number_characters_read, stdout); ??? } } int main (int argc, char* const argv[]) { ??? int socket_fd; ??? struct sockaddr_in name; ??? struct hostent* hostinfo; ??? /* Create the socket. */ ??? socket_fd = socket (PF_INET, SOCK_STREAM, 0); ??? /* Store the server’s name in the socket address. */ ??? name.sin_family = AF_INET; ??? /* Convert from strings to numbers. */ ??? hostinfo = gethostbyname (argv[1]); ??? if (hostinfo == NULL) ??????? return 1; ??? else ??????? name.sin_addr = *((struct in_addr *) hostinfo->h_addr); ??? /* Web servers use port 80. */ ??? name.sin_port = htons (80); ??? /* Connect to the Web server */ ??? if (connect (socket_fd, &name, sizeof (struct sockaddr_in)) == -1) { ??????? perror (“connect”); ??????? return 1; ??? } ??? /* Retrieve the server’s home page. */ ??? get_home_page (socket_fd); ??? return 0; } |
總結
以上是生活随笔為你收集整理的高级Linux程序设计第五章:进程间通信的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: bat脚本实现微信多开
- 下一篇: Linux_日志管理介绍(一)