prompt 代码示例
生活随笔
收集整理的這篇文章主要介紹了
prompt 代码示例
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
1. 定義任務(wù)
from openprompt.data_utils import InputExample classes=['negative','positive' ]dataset=[InputExample(guid = 0,text_a = "Albert Einstein was one of the greatest intellects of his time.",),InputExample(guid = 1,text_a = "The film was badly made.",), ]2. 定義預(yù)訓(xùn)練語(yǔ)言模型
from openprompt.plms import load_plm plm,tokenizer,model_config,WrapperClass=load_plm('bert',"bert-base-cased")3. 定義prompt模板
from openprompt.prompts import ManualTemplate promptTemplate=ManualTemplate(text='{"placeholder":"text_a"} It was {"mask"}',tokenizer=tokenizer, )4. 定義輸出-label映射
from openprompt.prompts import ManualVerbalizer promptVerbalizer=ManualVerbalizer(classes=classes,label_words={'negative':['bad'],'positive':['good','wonderful','great'],},tokenizer=tokenizer, )5. 組合構(gòu)建為PromptModel類(lèi)
from openprompt import PromptForClassification promptModel=PromptForClassification(template=promptTemplate,plm=plm,verbalizer=promptVerbalizer, )6. 定義dataloader
from openprompt import PromptDataLoader data_loader=PromptDataLoader(dataset=dataset,tokenizer=tokenizer,template=promptTemplate,tokenizer_wrapper_class=WrapperClass, )7. 開(kāi)始訓(xùn)練、測(cè)試
# making zero-shot inference using pretrained MLM with prompt promptModel.eval() with torch.no_grad():for batch in data_loader:logits=promptModel(batch)preds=torch.argmax(logits,dim=-1)print(classes[preds])# predictions would be 1, 0 for classes 'positive', 'negative'參考知乎
總結(jié)
以上是生活随笔為你收集整理的prompt 代码示例的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: scramble
- 下一篇: 迁移Prompt–解决Prompt Tu