日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Coding and Paper Letter(十四)

發(fā)布時(shí)間:2023/12/6 编程问答 40 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Coding and Paper Letter(十四) 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

2019獨(dú)角獸企業(yè)重金招聘Python工程師標(biāo)準(zhǔn)>>>

資源整理。

1 Coding:

1.R語言包ungeviz,ggplot2的拓展包,專門用來作不確定性的可視化。

ungeviz

2.計(jì)算機(jī)圖形學(xué)相關(guān)開源項(xiàng)目。

計(jì)算機(jī)圖形學(xué)光線追蹤開源項(xiàng)目C++源碼。

computer graphics ray tracing

計(jì)算機(jī)圖形學(xué)格網(wǎng)開源項(xiàng)目C++源碼。

computer graphics meshes

計(jì)算機(jī)圖形學(xué)介紹開源項(xiàng)目。

computer graphics

3.R語言包GLMMadaptive,基于自適應(yīng)高斯積分的廣義線性混合模型。

GLMMadaptive

4.R語言包walkr,在n-simplex和hyperplanes的交集中實(shí)現(xiàn)了MCMC隨機(jī)遍歷。

walkr

5.最全的中華古典文集數(shù)據(jù)庫, 包含5.5萬首唐詩、26萬首宋詩和2.1萬首宋詞. 唐宋兩朝近1.4萬古詩人, 和兩宋時(shí)期1.5K詞人. 數(shù)據(jù)來源于互聯(lián)網(wǎng)。

chinese poetry

6.R語言包rworldmap,繪制全球數(shù)據(jù)的R包。

rworldmap

7.基于Go的快速生成delaunay三角的算法實(shí)現(xiàn)。

delaunay

8.R語言包sigmaNet,在R中用sigma.js渲染igraph的對(duì)象。

sigmaNet

9.Pysal里的廣義線性回歸模型模塊。

spglm

10.Giddy是一個(gè)開源python庫,用于分析緯向空間數(shù)據(jù)的動(dòng)態(tài)。 源于PySAL(Python空間分析庫)中的空間動(dòng)力學(xué)模塊,正在積極開發(fā)包含新提出的分析,這些分析考慮了空間在分布演變中的作用。

griddy

11.用于可視化數(shù)據(jù)的代碼和教程。

RainCloudPlots

12.R語言包c(diǎn)ollections,R的高性能容器數(shù)據(jù)類型。

collections

13.Python項(xiàng)目pangeo example notebooks,用于pangeo-data / helm-chart的jupyternotebook。

pangeo example notebooks

14.Pythone庫pyGeostatistics,python里的地統(tǒng)計(jì)學(xué)包。

pyGeostatistics

15.Python項(xiàng)目landsat ingestor,用于將Landat數(shù)據(jù)提取到Amazon公共托管中的腳本和其他工具。

landsat ingestor

16.R語言包vctrs,vctrs的短期目標(biāo)指定了組合不同類型向量的函數(shù)。

vctrs

17.R語言包worldtilegrid,ggplot2的拓展包,專門針對(duì)世界瓦片格網(wǎng)。

worldtilegrid

18.Geostat18完整的資料鏈接。詳情可以見官網(wǎng)。

geostat18 links

19.Python庫keras工具箱,深度學(xué)習(xí)框架。

keras toolbox

20.R語言包GSIF,全球土壤信息數(shù)據(jù)庫。

GSIF

21.ECPR暑期學(xué)校:社會(huì)科學(xué)的大數(shù)據(jù)分析。

ECPR SC105

22.Python庫radarpy,處理radar的Python工具。

radarpy

23.R語言包uavRst,無人機(jī)相關(guān)遙感工具箱。

uavRst

2 Paper:

1.Spatial association detector (SPADE)/空間關(guān)聯(lián)探測(cè)器

發(fā)表于IJGIS上的一篇論文,介紹了由地理探測(cè)器改進(jìn)而來的空間關(guān)聯(lián)探測(cè)器,是針對(duì)地理探測(cè)器的一些問題做的改進(jìn)。主要是羅衛(wèi)老師和他的團(tuán)隊(duì)提出的,我后面會(huì)詳細(xì)解讀此文。

2.Using Google Earth Engine for Landsat NDVI time series analysis to indicate the present status of forest stands/利用Google Earth Engine做Landsat NDVI的時(shí)間序列分析來分析林分的現(xiàn)狀

這篇文章是國外本科生的畢業(yè)設(shè)計(jì)。該研究使用了GEE與Landsat 5和8圖像一起用于研究德國三個(gè)研究區(qū)域的歸一化差異植被指數(shù)(NDVI)隨時(shí)間的變化。

3.Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: a case study of central Shandong/利用隨機(jī)森林分類結(jié)合NDVI時(shí)間序列和紋理進(jìn)行土地覆蓋制圖 - 以山東中部為例

復(fù)雜農(nóng)業(yè)區(qū)的土地覆蓋制圖是一項(xiàng)艱巨的任務(wù),因?yàn)橹脖粡?fù)雜,山體湍急,河流快速流動(dòng),需要一種精確分類復(fù)雜土地覆蓋的方法。隨機(jī)森林分類(RFC)具有分類準(zhǔn)確率高和在土地覆蓋制圖中測(cè)量變量重要性的能力。本研究使用RFC對(duì)復(fù)雜農(nóng)業(yè)區(qū)域的土地覆蓋制圖進(jìn)行了歸一化差異植被指數(shù)(NDVI)時(shí)間序列和灰度共生矩陣(GLCM)紋理變量的加法評(píng)估。在此基礎(chǔ)上,選擇最佳分類模型,提取山東中部的土地覆蓋分類信息。為了探索哪些輸入變量為復(fù)雜農(nóng)業(yè)區(qū)的土地覆蓋分類提供最佳準(zhǔn)確度,我們?cè)u(píng)估隨機(jī)森林變量的重要性。結(jié)果表明,不僅加入多時(shí)相圖像和地形變量,而且加入GLCM紋理變量和NDVI時(shí)間序列變量。對(duì)隨機(jī)森林分類器重要性的評(píng)估表明,關(guān)鍵輸入變量為夏季NDVI,隨后是夏季近紅外波段和海拔,以及GLCM均值,GLCM對(duì)比度。中山大學(xué)劉小平老師團(tuán)隊(duì)的成果,針對(duì)土地覆被的分類研究,主要是在特征工程上增加了NDVI時(shí)間序列和灰度共生矩陣的一些紋理變量。

4.A Forest Attribute Mapping Framework: A Pilot Study in a Northern Boreal Forest, Northwest Territories, Canada/森林屬性制圖框架:加拿大西北地區(qū)北方北方森林的樣地研究

提出了一種方法框架,利用樣地,機(jī)載光探測(cè)和測(cè)距(LiDAR)以及星載地球科學(xué)激光高度計(jì)系統(tǒng)(GLAS)數(shù)據(jù)來估算加拿大北部20 Mha地區(qū)的森林屬性。實(shí)施該框架是為了將森林屬性模型從現(xiàn)場(chǎng)數(shù)據(jù)擴(kuò)展到交叉的機(jī)載LiDAR數(shù)據(jù),然后擴(kuò)展到GLAS足跡。 GLAS數(shù)據(jù)被順序過濾并提交給k-最近鄰(k-NN)插補(bǔ)算法,以產(chǎn)生30米分辨率的林分高度和樹冠閉合的區(qū)域估計(jì)。根據(jù)獨(dú)立的機(jī)載LiDAR數(shù)據(jù)評(píng)估得到的輸出,以評(píng)估林分高度的平均估計(jì)值和冠閉合。作為主要植被類型和生態(tài)區(qū)域的函數(shù)進(jìn)行了額外的評(píng)估,以進(jìn)一步評(píng)估區(qū)域產(chǎn)品。這些屬性構(gòu)成了森林清查繪圖程序典型的主要描述性結(jié)構(gòu)屬性,并提供了在北方寒帶地區(qū)如何得出這些屬性的信息。機(jī)載和星載激光雷達(dá)數(shù)據(jù)的耦合研究。關(guān)于不確定性制圖的思路值得借鑒。

轉(zhuǎn)載于:https://my.oschina.net/u/2424163/blog/1935331

總結(jié)

以上是生活随笔為你收集整理的Coding and Paper Letter(十四)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。