日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

I. Rise of Shadows(类欧几里得)

發布時間:2023/12/4 编程问答 39 豆豆
生活随笔 收集整理的這篇文章主要介紹了 I. Rise of Shadows(类欧几里得) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

I. Rise of Shadows

一天有HHH個小時,MMM分鐘,問,有多少個整數分鐘,滿足時針與分針的角度≤α\le \alphaαα=2πAHM\alpha = \frac{2 \pi A}{HM}α=HM2πA?
∑i=0H?1∑j=0M?1[∣2π(i×M+j)HM?2πjM∣≤2πAHM]∑i=0H?1∑j=0M?1[∣i×M+j?H×j∣≤A]H×M?∑i=0H?1∑j=0M?1[i×M+j?H×j>A]?∑i=0H?1∑j=0M?1[i×M+j?H×j<?A]\sum_{i = 0} ^{H - 1} \sum_{j = 0} ^{M - 1} [ \mid\frac{2 \pi(i \times M + j)}{HM} - \frac{2\pi j}{M} \ \mid \le \frac{2 \pi A}{HM}]\\ \sum_{i = 0} ^{H - 1} \sum_{j = 0} ^{M - 1} [\mid i \times M + j - H \times j \mid \le A]\\ H \times M - \sum_{i = 0} ^{H - 1} \sum_{j = 0} ^{M - 1} [i \times M + j - H \times j > A] - \sum_{i = 0} ^{H - 1} \sum_{j = 0} ^{M - 1} [i \times M + j - H \times j < -A]\\ i=0H?1?j=0M?1?[HM2π(i×M+j)??M2πj??HM2πA?]i=0H?1?j=0M?1?[i×M+j?H×jA]H×M?i=0H?1?j=0M?1?[i×M+j?H×j>A]?i=0H?1?j=0M?1?[i×M+j?H×j<?A]

∑i=0H?1∑j=0M?1[i×M+j?H×j>A]∑i=0H?1∑j=0M?1[i>(H?1)×j+AM]∑j=0M?1(H?1?(H?1)×j+AM)M×(H?1)?∑i=0M?1(H?1)×i+AM\sum_{i = 0} ^{H - 1} \sum_{j = 0} ^{M - 1} [i \times M + j - H \times j > A]\\ \sum_{i = 0} ^{H - 1} \sum_{j = 0} ^{M - 1} [i > \frac{(H - 1) \times j + A}{M}]\\ \sum_{j = 0} ^{M - 1} \left(H - 1 - \frac{(H - 1) \times j + A}{M} \right)\\ M \times (H - 1) - \sum_{i = 0} ^{M - 1} \frac{(H - 1) \times i + A}{M}\\ i=0H?1?j=0M?1?[i×M+j?H×j>A]i=0H?1?j=0M?1?[i>M(H?1)×j+A?]j=0M?1?(H?1?M(H?1)×j+A?)M×(H?1)?i=0M?1?M(H?1)×i+A?

∑i=0H?1∑j=0M?1[i×M+j?H×j<?A]∑i=0H?1(M?∑j=0M?1[i×M+j?H×j≥?A])H×M?∑i=0H?1∑j=0M?1[i×M+j?H×j>?A?1+(H+1)?(H+1)]H×M?∑j=0M?1∑i=0H?1[i>(H?1)×j+(H+1)M?A?1)M?(H+1)]H×M?∑j=0M?1H?1?(H?1)×j+(H+1)M?A?1M+H+1?HM+∑i=0M?1(H?1)×i+(H+1)M?A?1M\sum_{i = 0} ^{H - 1} \sum_{j = 0} ^{M - 1} [i \times M + j - H \times j < -A]\\ \sum_{i = 0} ^{H - 1} \left(M - \sum_{j = 0} ^{M - 1} [i \times M + j - H \times j \ge -A] \right)\\ H \times M - \sum_{i = 0} ^{H - 1} \sum_{j = 0} ^{M -1} [i \times M + j - H \times j > -A - 1 + (H + 1) - (H + 1)]\\ H \times M - \sum_{j = 0} ^{M - 1} \sum_{i = 0} ^{H - 1} [i > \frac{(H - 1) \times j +(H + 1)M - A - 1)}{M} - (H + 1)]\\ H \times M - \sum_{j = 0} ^{M - 1} H - 1 - \frac{(H - 1) \times j +(H + 1)M - A - 1}{M} + H + 1\\ -HM + \sum_{i = 0} ^{M - 1} \frac{(H - 1) \times i + (H + 1)M - A - 1}{M}\\ i=0H?1?j=0M?1?[i×M+j?H×j<?A]i=0H?1?(M?j=0M?1?[i×M+j?H×j?A])H×M?i=0H?1?j=0M?1?[i×M+j?H×j>?A?1+(H+1)?(H+1)]H×M?j=0M?1?i=0H?1?[i>M(H?1)×j+(H+1)M?A?1)??(H+1)]H×M?j=0M?1?H?1?M(H?1)×j+(H+1)M?A?1?+H+1?HM+i=0M?1?M(H?1)×i+(H+1)M?A?1?
綜上,答案為:
M+HM+∑i=0M?1(H?1)×i+AM?∑i=0M?1(H?1)×i+(H+1)M?A+1MM + HM + \sum_{i = 0} ^{M - 1} \frac{(H - 1) \times i + A}{M} - \sum_{i = 0} ^{M - 1} \frac{(H - 1) \times i + (H + 1) M - A + 1}{M} M+HM+i=0M?1?M(H?1)×i+A??i=0M?1?M(H?1)×i+(H+1)M?A+1?

#include <bits/stdc++.h> #define int long longusing namespace std;long long f(long long a, long long b, long long c, long long n) {if (!a) {return (b / c) * (n + 1);}if (a >= c || b >= c) {return f(a % c, b % c, c, n) + (b / c) * (n + 1) + (a / c) * n * (n + 1) / 2;}long long m = (a * n + b) / c;return n * m - f(c, c - b - 1, a, m - 1); }signed main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);int h, m, a;cin >> h >> m >> a;cout << min(m + h * m + f(h - 1, a, m, m - 1) - f(h - 1, (h + 1) * m - a - 1, m, m - 1), h * m) << "\n";return 0; }

總結

以上是生活随笔為你收集整理的I. Rise of Shadows(类欧几里得)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。