单位根反演小记
單位根反演
一個等式:[n∣a]=1n∑k=0n?1wnak[n \mid a] = \frac{1}{n} \sum\limits_{k = 0} ^{n - 1}w_n ^{ak}[n∣a]=n1?k=0∑n?1?wnak?
證明:
wnaw_n ^ awna?是nnn次單位根的aaa次方,所以這里是一個公比為wnaw_n ^ awna?的等比數列,
考慮公比不為111,等比數列求和1nwn0(wnan?1)wna?1\frac{1}{n} \frac{w_n ^ 0(w_n ^ {an} - 1)}{w_n ^ a - 1}n1?wna??1wn0?(wnan??1)?, 有wnan?1=w1a?1=0w_n ^{an} - 1 = w_1 ^ a - 1 = 0wnan??1=w1a??1=0,所以該等比數列求和為000,
如果n∣an \mid an∣a,有wnak=w1ank=1w_n ^ {ak} = w_{1} ^{\frac{a}{n}k} = 1wnak?=w1na?k?=1,所以有[n∣a]=1n∑k=0n?11=1[n \mid a] = \frac{1}{n} \sum\limits_{k = 0} ^{n - 1} 1 = 1[n∣a]=n1?k=0∑n?1?1=1。
而有下面的推論:
a≡b(modn)a \equiv b \pmod{ n}a≡b(modn),有a?b≡0(modn)a - b \equiv 0 \pmod{n}a?b≡0(modn),[n∣a?b]=1n∑k=0n?1wnkawn?kb[n \mid a - b] = \frac{1} {n} \sum\limits_{k = 0} ^{n - 1} w_n ^{ka} w_{n} ^{-kb}[n∣a?b]=n1?k=0∑n?1?wnka?wn?kb?。
#6485. LJJ 學二項式定理
∑i=0n(in)siaimod4∑i=0n(in)si∑j=03aj[i≡j(mod4)]∑i=0n(in)si∑j=03aj14∑k=03w4k(i?j)14∑j=03aj∑k=03w4?kj∑i=0n(in)siw4ki14∑j=03aj∑k=03w4?kj(sw4k+1)n\sum_{i = 0} ^{n} (_i ^ n) s ^ i a_{i\mod4}\\ \sum_{i = 0} ^{n} (_i ^ n) s ^ i \sum_{j = 0} ^{3} a_j[i \equiv j \pmod{4}]\\ \sum_{i = 0} ^{n} (_i ^ n) s ^ i \sum_{j = 0} ^{3} a_j \frac{1}{4} \sum_{k = 0} ^{3} w_{4} ^{k(i - j)}\\ \frac{1}{4} \sum_{j = 0} ^{3} a_j \sum_{k = 0} ^{3} w_4 ^{-kj} \sum_{i = 0} ^{n} (_i ^ n) s ^ i w_4 ^{ki}\\ \frac{1}{4} \sum_{j = 0} ^{3} a_j \sum_{k = 0} ^{3} w_4 ^{-kj} (sw_4 ^ k + 1) ^ n\\ i=0∑n?(in?)siaimod4?i=0∑n?(in?)sij=0∑3?aj?[i≡j(mod4)]i=0∑n?(in?)sij=0∑3?aj?41?k=0∑3?w4k(i?j)?41?j=0∑3?aj?k=0∑3?w4?kj?i=0∑n?(in?)siw4ki?41?j=0∑3?aj?k=0∑3?w4?kj?(sw4k?+1)n
有998244353998244353998244353下的單位根是333,所以w41=3mod?14w_4 ^ 1 = 3 ^{\frac{mod - 1}{4}}w41?=34mod?1?,(w41)4=3mod?1=1(w_4 ^ 1) ^ 4 = 3 ^{mod - 1} = 1(w41?)4=3mod?1=1,快速冪即可。
P5591 小豬佩奇學數學
∑i=0n(in)×pi×?ik??ik?=i?i%kk1k∑i=0n(in)×pi×(i?i%k)1k∑i=0n(in)×pi×i?1k∑i=0n(in)×pi(imodk)\sum_{i = 0} ^{n} (_i ^ n) \times p ^ i \times \lfloor \frac{i}{k} \rfloor\\ \lfloor \frac{i}{k} \rfloor = \frac{i - i \% k}{k}\\ \frac{1}{k} \sum_{i = 0} ^{n} (_i ^ n) \times p ^ i \times (i - i \% k)\\ \frac{1}{k} \sum_{i = 0} ^{n} (_i ^ n) \times p ^ i \times i - \frac{1}{k} \sum_{i = 0} ^{n} (_i ^ n) \times p ^ i (i \mod k)\\ i=0∑n?(in?)×pi×?ki???ki??=ki?i%k?k1?i=0∑n?(in?)×pi×(i?i%k)k1?i=0∑n?(in?)×pi×i?k1?i=0∑n?(in?)×pi(imodk)
考慮前項化簡:
1k∑i=0n(in)×pi×i∑i=0n(in)×i=∑i=0nn!i!(n?i)!i=∑i=1nn!(i?1)!(n?i)!n∑i=1n(n?1)!(i?1)!(n?i)!=n∑i=1n(i?1n?1)原式npk∑i=1n(i?1n?1)pi?1=npk(p+1)n?1\frac{1}{k} \sum_{i = 0} ^{n} (_i ^ n) \times p ^ i \times i\\ \sum_{i = 0} ^{n} (_i ^ n) \times i = \sum_{i = 0} ^{n} \frac{n!}{i!(n - i)!} i = \sum_{i = 1} ^{n} \frac{n!}{(i - 1)!(n - i)!}\\ n\sum_{i = 1} ^{n} \frac{(n - 1)!}{(i - 1)!(n - i)!} = n \sum_{i = 1} ^{n} (_{i - 1} ^{n - 1})\\ 原式\frac{np}{k} \sum_{i = 1} ^{n} (_{i - 1} ^{n - 1}) p ^{i - 1} = \frac{np}{k} (p + 1) ^{n - 1}\\ k1?i=0∑n?(in?)×pi×ii=0∑n?(in?)×i=i=0∑n?i!(n?i)!n!?i=i=1∑n?(i?1)!(n?i)!n!?ni=1∑n?(i?1)!(n?i)!(n?1)!?=ni=1∑n?(i?1n?1?)原式knp?i=1∑n?(i?1n?1?)pi?1=knp?(p+1)n?1
考慮后項化簡:
1k∑d=0k?1d∑i=0n(in)pi[k∣i?d]對[k∣i?d]進行單位根反演1k∑d=0k?1d∑i=0n(in)×pi×1k∑j=0k?1wkj(i?d)1k2∑d=0k?1d∑j=0k?1wk?jd∑i=0n(in)piwkij1k2∑d=0k?1d∑j=0k?1wk?jd(pwkj+1)n1k2∑j=0k?1(p×wkj+1)n∑d=0k?1d×wk?jd\frac{1}{k} \sum_{d = 0} ^{k - 1} d \sum_{i = 0} ^{n} (_i ^ n) p ^ i[k \mid i - d]\\ 對[k \mid i - d]進行單位根反演\\ \frac{1}{k} \sum_{d = 0} ^{k - 1} d \sum_{i = 0} ^{n} (_i ^ n) \times p ^ i \times \frac{1}{k} \sum_{j = 0} ^{k - 1} w_k ^{j(i- d)}\\ \frac{1}{k ^ 2}\sum_{d = 0} ^{k - 1} d \sum_{j = 0} ^{k - 1} w_{k} ^{-jd} \sum_{i = 0} ^{n} (_i ^ n) p ^ i w_{k} ^{ij}\\ \frac{1}{k ^ 2} \sum_{d = 0} ^{k - 1} d \sum_{j = 0} ^{k - 1} w_{k} ^{-jd} (pw_k ^{j} + 1) ^{n}\\ \frac{1}{k ^ 2} \sum_{j = 0} ^{k - 1} (p \times w_k ^ j + 1) ^n \sum_{d = 0} ^{k - 1} d \times w_{k} ^{-jd}\\ k1?d=0∑k?1?di=0∑n?(in?)pi[k∣i?d]對[k∣i?d]進行單位根反演k1?d=0∑k?1?di=0∑n?(in?)×pi×k1?j=0∑k?1?wkj(i?d)?k21?d=0∑k?1?dj=0∑k?1?wk?jd?i=0∑n?(in?)piwkij?k21?d=0∑k?1?dj=0∑k?1?wk?jd?(pwkj?+1)nk21?j=0∑k?1?(p×wkj?+1)nd=0∑k?1?d×wk?jd?
∑d=0k?1d×wk?jd\sum\limits_{d = 0} ^{k - 1} d \times w_k ^{-jd}d=0∑k?1?d×wk?jd?形如∑i=0n?1iri\sum\limits_{i = 0} ^{n - 1} i r ^ ii=0∑n?1?iri,考慮形如∑i=0n?1(i+1)ri+1\sum\limits_{i = 0} ^{n - 1} (i + 1) r ^ {i + 1}i=0∑n?1?(i+1)ri+1這樣的式子化簡:
∑i=0n?1(i+1)ri+1=r∑i=0n?1iri+∑i=0n?1ri+1=r∑i=0n?1iri+r(rn?1)r?1有∑i=0n?1iri=∑i=0n?1(i+1)ri+1?0r0?nrn所以∑i=0n?1iri=r∑i=0n?1iri+r(rn?1)r?1?nrn整理可得∑i=0n?1iri=nrn?r(rn?1)r?1r?1=nrn(r?1)?r(rn?1)(r?1)2=nrnr?1?r(rn?1)(r?1)2\sum_{i = 0} ^{n - 1} (i + 1) r ^{i + 1} = r\sum_{i = 0} ^{n - 1} i r ^i + \sum_{i = 0} ^{n - 1} r ^{i + 1} = r \sum_{i = 0} ^{n - 1} i r ^ i + \frac{r(r ^ n - 1)}{r - 1}\\ 有\sum_{i = 0} ^{n - 1} i r ^ i = \sum_{i = 0} ^{n - 1} (i + 1) r ^{i + 1} - 0 r ^ 0 - n r ^ n\\ 所以\sum_{i = 0} ^{n - 1} i r ^ i = r \sum_{i = 0} ^{n - 1} i r ^ i + \frac{r(r ^ n - 1)}{r - 1} - n r ^ n\\ 整理可得\sum_{i = 0} ^{n - 1} i r ^ i = \frac{n r ^ n - \frac{r(r ^ n - 1)}{r - 1}}{r - 1} = \frac{n r ^ n(r - 1) - r (r ^ n - 1)}{(r - 1) ^ 2} = \frac{nr ^ n}{ r - 1} - \frac{r(r ^ n - 1)}{(r - 1) ^ 2}\\ i=0∑n?1?(i+1)ri+1=ri=0∑n?1?iri+i=0∑n?1?ri+1=ri=0∑n?1?iri+r?1r(rn?1)?有i=0∑n?1?iri=i=0∑n?1?(i+1)ri+1?0r0?nrn所以i=0∑n?1?iri=ri=0∑n?1?iri+r?1r(rn?1)??nrn整理可得i=0∑n?1?iri=r?1nrn?r?1r(rn?1)??=(r?1)2nrn(r?1)?r(rn?1)?=r?1nrn??(r?1)2r(rn?1)?
特殊情況r=1r = 1r=1時∑i=0n?1iri=n(n?1)2\sum\limits_{i = 0} ^{n - 1} i r ^ i = \frac{n(n - 1)}{2}i=0∑n?1?iri=2n(n?1)?,對后項再進行化簡:
∑d=0k?1d×wk?jd考慮j≠0時,也就是wkj不為1∑d=0k?1d×wk?jd=kwk?jkwk?j?1?wk?j(wk?jk?1)(wk?j?1)2=kwk?j?1后項整體有:1k2∑j=0k?1(p×wkj+1)nkwk?j?1\sum_{d = 0} ^{k - 1} d \times w _k ^{-jd}\\ 考慮j \neq 0時,也就是w_{k} ^{j}不為1\\ \sum_{d = 0} ^{k - 1} d \times w_k ^{-jd} = \frac{k w_k ^ {-jk}}{w_k ^{-j} - 1} - \frac{w_k ^{-j}(w_k ^{-jk} - 1)}{(w_k ^{-j} - 1) ^ 2} = \frac{k}{w_k ^{-j} - 1}\\ 后項整體有:\frac{1}{k ^ 2} \sum_{j = 0} ^{k - 1} (p \times w_k ^ j + 1) ^ n \frac{k}{w_k ^{-j} - 1}\\ d=0∑k?1?d×wk?jd?考慮j?=0時,也就是wkj?不為1d=0∑k?1?d×wk?jd?=wk?j??1kwk?jk???(wk?j??1)2wk?j?(wk?jk??1)?=wk?j??1k?后項整體有:k21?j=0∑k?1?(p×wkj?+1)nwk?j??1k?
最后答案為:
npk(p+1)n?1?(k(k?1)2(p+1)nk2+∑j=1k?1(p×wkj+1)nk(wk?j?1))npk(p+1)n?1?((k?1)(p+1)n2k+∑j=1k?1(p×wkj+1)nk(wk?j?1))\frac{np}{k}(p + 1) ^ {n - 1} - \left(\frac{k(k - 1)}{2}\frac{(p + 1) ^ n}{k ^ 2} + \sum\limits_{j = 1} ^{k - 1} \frac{(p \times w_k ^ j + 1) ^ n}{k(w_{k} ^{-j} - 1)}\right)\\ \frac{np}{k}(p + 1) ^ {n - 1} - \left(\frac{(k - 1)(p + 1) ^ n}{2k} + \sum\limits_{j = 1} ^{k - 1} \frac{(p \times w_k ^ j + 1) ^ n}{k(w_{k} ^{-j} - 1)}\right)\\ knp?(p+1)n?1?(2k(k?1)?k2(p+1)n?+j=1∑k?1?k(wk?j??1)(p×wkj?+1)n?)knp?(p+1)n?1?(2k(k?1)(p+1)n?+j=1∑k?1?k(wk?j??1)(p×wkj?+1)n?)
總結
- 上一篇: 孕妇用什么驱蚊安全
- 下一篇: P5591 小猪佩奇学数学(单位根反演)