日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪(fǎng)問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

2019-ACM-ICPC-南京区网络赛-E. K Sum(莫比乌斯反演 + 杜教筛)

發(fā)布時(shí)間:2023/12/4 编程问答 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 2019-ACM-ICPC-南京区网络赛-E. K Sum(莫比乌斯反演 + 杜教筛) 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

K Sum

推式子

Fn(k)=∑l1=1n∑l2=1n?∑lk=1n(gcd(l1,l2,…,lk))2=∑d=1nd2∑l1=1nd∑l2=1nd?∑lk=1nd(gcd(l1,l2,…,lk)=1)=∑d=1nd2∑l1=1nd∑l2=1nd?∑lk=1nd∑t∣gcd(l1,l2,…,lk)μ(t)=∑d=1nd2∑t=1ndμ(t)(ntd)2另T=td=∑T=1n(nT)k∑d∣Td2μ(Td)∑i=2nFn(i)=∑T=1n∑i=2k(nT)i∑d∣Td2μ(Td)到這一步前面的一部分只要對(duì)等比數(shù)列求和加上歐拉降冪就行后面是一個(gè)積性函數(shù)前綴和,我們可以考慮通過(guò)杜教篩求解。f(n)=∑d∣nd2μ(nd)f(n)=(μ?id2)(n)(f?I)(n)=(μ?I?id2)(n)=id2(n)∑i=1ni2=∑i=1n∑d∣if(d)=∑i=1n∑d=1nif(d)=∑i=1nS(ni)S(n)=∑i=1ni2?∑i=2nS(ni)還是寫(xiě)一下等比數(shù)列的求和公式吧∑T=1n∑i=2knT((nT)k?1)nT?1?nT然后注意特判一下公比為1的特殊情況,因?yàn)檫@個(gè)給wa了一發(fā)。F_n(k) = \sum_{l_1 = 1} ^{n} \sum_{l_2 = 1} ^{n} \dots \sum_{l_k = 1} ^{n} (gcd(l_1, l_2,\dots, l_k)) ^ 2\\ = \sum_{d = 1} ^{n} d ^ 2 \sum_{l_1 = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{l_2 = 1} ^{\frac{n}ozvdkddzhkzd} \dots \sum_{l_k = 1} ^{\frac{n}ozvdkddzhkzd} (gcd(l_1, l_2,\dots, l_k) = 1)\\ = \sum_{d = 1} ^{n} d ^ 2 \sum_{l_1 = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{l_2 = 1} ^{\frac{n}ozvdkddzhkzd} \dots \sum_{l_k = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{t \mid gcd(l_1, l_2,\dots, l_k)} \mu(t)\\ = \sum_{d = 1} ^{n}d ^ 2 \sum_{t = 1} ^{\frac{n}ozvdkddzhkzd} \mu(t) (\frac{n}{td}) ^ 2\\ 另T = td\\ = \sum_{T = 1} ^{n} (\frac{n}{T}) ^ k \sum_{d \mid T} d ^ 2 \mu(\frac{T}ozvdkddzhkzd)\\ \sum_{i = 2} ^{n} F_n(i) = \sum_{T = 1} ^{n} \sum_{i = 2} ^{k} (\frac{n}{T}) ^ i \sum_{d \mid T} d ^ 2 \mu(\frac{T}ozvdkddzhkzd)\\ 到這一步前面的一部分只要對(duì)等比數(shù)列求和加上歐拉降冪就行\(zhòng)\后面是一個(gè)積性函數(shù)前綴和,我們可以考慮通過(guò)杜教篩求解。 \\f(n) = \sum_{d \mid n} d ^ 2 \mu(\frac{n}ozvdkddzhkzd)\\ f(n) = (\mu * id ^ 2)(n)\\ (f * I)(n) = (\mu * I * id ^ 2)(n) = id ^ 2(n)\\ \sum_{i = 1} ^{n} i ^ 2 = \sum_{i = 1} ^{n} \sum_{d \mid i} f(d) = \sum_{ i =1} ^{n} \sum_{d = 1} ^{\frac{n}{i}}f(d) = \sum_{i = 1} ^{n} S(\frac{n}{i})\\ S(n) = \sum_{i = 1} ^{n} i ^ 2 - \sum_{i = 2} ^{n} S(\frac{n}{i})\\ 還是寫(xiě)一下等比數(shù)列的求和公式吧\\ \sum_{T = 1} ^{n} \sum_{i = 2} ^{k} \frac{\frac{n}{T}((\frac{n}{T}) ^ k - 1)}{\frac{n}{T} - 1} - \frac{n}{T}\\ 然后注意特判一下公比為1的特殊情況,因?yàn)檫@個(gè)給wa了一發(fā)。 Fn?(k)=l1?=1n?l2?=1n??lk?=1n?(gcd(l1?,l2?,,lk?))2=d=1n?d2l1?=1dn??l2?=1dn???lk?=1dn??(gcd(l1?,l2?,,lk?)=1)=d=1n?d2l1?=1dn??l2?=1dn???lk?=1dn??tgcd(l1?,l2?,,lk?)?μ(t)=d=1n?d2t=1dn??μ(t)(tdn?)2T=td=T=1n?(Tn?)kdT?d2μ(dT?)i=2n?Fn?(i)=T=1n?i=2k?(Tn?)idT?d2μ(dT?)對(duì)數(shù)個(gè)數(shù)過(guò)。f(n)=dn?d2μ(dn?)f(n)=(μ?id2)(n)(f?I)(n)=(μ?I?id2)(n)=id2(n)i=1n?i2=i=1n?di?f(d)=i=1n?d=1in??f(d)=i=1n?S(in?)S(n)=i=1n?i2?i=2n?S(in?)寫(xiě)數(shù)T=1n?i=2k?Tn??1Tn?((Tn?)k?1)??Tn?1個(gè)wa發(fā)。

代碼

/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }const int N = 1e6 + 10, mod = 1e9 + 7, inv6 = 166666668;ll s[N];int prime[N], mu[N], cnt;bool st[N];ll quick_pow(ll a, ll n) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans; }void init() {mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {mu[i] = -1;prime[cnt++] = i;}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}// for(int i = 1; i <= 10; i++) {// cout << mu[i] << " \n"[i == 10];// }for(int i = 1; i < N; i++) {for(int j = i; j < N; j += i) {s[j] = (s[j] + 1ll * i * i % mod * mu[j / i] % mod + mod) % mod;}}// for(int i = 1; i <= 10; i++) {// cout << s[i] << " \n"[i == 10];// }for(int i = 1; i < N; i++) {s[i] = (s[i] + s[i - 1]) % mod;} }unordered_map<int, int> ans_s;ll S(ll n) {if(n < N) return s[n];if(ans_s.count(n)) return ans_s[n];ll ans = 1ll * n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;for(ll l = 2, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans - (r - l + 1) * S(n / l) % mod + mod) % mod;}return ans_s[n] = ans; }ll calc(ll q, ll n, ll x) {if(q == 1) return (x - 1 + mod) % mod;ll ans = q * (quick_pow(q, n) - 1) % mod * quick_pow(q - 1, mod - 2) % mod;return (ans - q + mod) % mod; }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();int T; cin >> T;while(T--) {int n, k1 = 0, k2 = 0, sz; cin >> n;string str; cin >> str; sz = str.size();for(int i = 0; i < sz; i++) {k1 = (1ll * k1 * 10 + (str[i] - '0')) % (mod - 1);k2 = (1ll * k2 * 10 + (str[i] - '0')) % mod;}//公比為1的時(shí)候特判,所以記錄兩個(gè)k。// cout << n << " " << str << endl;ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);// cout << l << " " << r << endl;// cout << S(r) << " " << S(l - 1) << endl;ans = (ans + calc(n / l, k1, k2) * (S(r) - S(l - 1)) % mod + mod) % mod;// cout << ans << endl;}cout << ans << endl;// cout << endl;}return 0; }

總結(jié)

以上是生活随笔為你收集整理的2019-ACM-ICPC-南京区网络赛-E. K Sum(莫比乌斯反演 + 杜教筛)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。