[51 nod 1238] 最小公倍数之和 V3(杜教筛)
1238 最小公倍數之和 V3
推式子
∑i=1n∑j=1nlcm(i,j)=∑i=1n∑j=1nijgcd(i,j)=∑d=1n∑i=1n∑j=1nijd(gcd(i,j)==d)=∑d=1nd∑i=1nd∑j=1ndij(gcd(i,j)==1)=∑d=1nd∑i=1nd∑j=1ndij∑k∣gcd(i,j)μ(k)=∑d=1nd∑k=1ndk2μ(k)∑i=1ndk∑j=1ndkij\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} lcm(i, j)\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{n}\frac{ij}{gcd(i, j)}\\ =\sum_{d = 1} ^{n} \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{ij}ozvdkddzhkzd (gcd(i, j) == d)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{j = 1} ^{\frac{n}ozvdkddzhkzd}ij(gcd(i, j) == 1)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{j = 1} ^{\frac{n}ozvdkddzhkzd}ij\sum_{k \mid gcd(i, j)} \mu(k)\\ = \sum_{d = 1} ^{n} d \sum_{k = 1} ^{\frac{n}ozvdkddzhkzd} k ^ 2\mu(k)\sum_{i = 1} ^{\frac{n}{dk}} \sum_{j = 1} ^{\frac{n}{dk}}ij\\ i=1∑n?j=1∑n?lcm(i,j)=i=1∑n?j=1∑n?gcd(i,j)ij?=d=1∑n?i=1∑n?j=1∑n?dij?(gcd(i,j)==d)=d=1∑n?di=1∑dn??j=1∑dn??ij(gcd(i,j)==1)=d=1∑n?di=1∑dn??j=1∑dn??ijk∣gcd(i,j)∑?μ(k)=d=1∑n?dk=1∑dn??k2μ(k)i=1∑dkn??j=1∑dkn??ij
化簡到這里好像能通過兩次數論分塊得到我們的答案,但是復雜度是O(n)O(n)O(n)的,顯然不行,所以我們考慮另一種化簡方法。
∑i=1n∑j=1nlcm(i,j)=∑i=1n∑j=1nijgcd(i,j)=∑d=1n∑i=1n∑j=1nijd(gcd(i,j)==d)=∑d=1nd∑i=1nd∑j=1ndij(gcd(i,j)==1)這里兩個的上屆都是nd,所以我們可以分類討論一下,i>j,i==j,i<j,由于i>j,i<j可以合并,所以上式變成=∑d=1nd(2∑i=1ndi(∑j=1ij×(gcd(i,j)==1))?1)根據歐拉函數定理,我們可以再次化簡=∑d=1nd(2∑i=1ndi(i?(i)+(i==1)2)?1)=∑d=1nd∑i=1ndi2?(i)接下來就是按照套路用杜教篩求解∑i=1ndi2?(i)了S(n)=∑i=1ni2?(i)=∑i=1nf(i)∑i=1n(f?g)(i)=∑i=1ng(i)S(ni)g(1)S(n)=∑i=1n(f?g)(i)?∑d=2ng(i)S(nd)(f?g)(i)=∑d∣if(d)g(id)=∑d∣id2?(d)g(id)容易想到∑d∣i?(d)=i,所以如果可以提出d2那就完美了,我們可以另g(i)=i2,上式變成∑d∣id2?(d)i2d2=i2∑d∣i?(d)=i3S(n)=∑i=1ni3?∑d=1nd2S(nd)=n2(n+1)24?∑d=1nd2S(nd)\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} lcm(i, j)\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{n}\frac{ij}{gcd(i, j)}\\ =\sum_{d = 1} ^{n} \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{ij}ozvdkddzhkzd (gcd(i, j) == d)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{j = 1} ^{\frac{n}ozvdkddzhkzd}ij(gcd(i, j) == 1)\\ 這里兩個的上屆都是\frac{n}ozvdkddzhkzd,所以我們可以分類討論一下,i > j, i == j, i < j,由于i > j, i < j可以合并,所以上式變成\\ = \sum_{d = 1} ^{n} d (2\sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} i (\sum_{j = 1} ^{i}j\times (gcd(i, j) == 1)) - 1)\\ 根據歐拉函數定理,我們可以再次化簡\\ = \sum_{d = 1} ^{n} d (2\sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} i (\frac{i\phi(i) + (i == 1)}{2}) - 1)\\ = \sum_{d = 1} ^{n} d \sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} i ^ 2 \phi(i)\\ 接下來就是按照套路用杜教篩求解\sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} i ^ 2 \phi(i)了\\ S(n) = \sum_{i = 1} ^{n} i ^ 2 \phi(i) = \sum_{i = 1} ^{n} f(i) \\ \sum_{i = 1} ^{n} (f * g)(i) \\ = \sum_{i = 1} ^{n}g(i)S(\frac{n}{i})\\ g(1)S(n) = \sum_{i = 1} ^{n} (f * g)(i) - \sum_{d = 2} ^{n} g(i)S(\frac{n}ozvdkddzhkzd)\\ (f * g)(i) = \sum_{d \mid i} f(d)g(\frac{i}ozvdkddzhkzd) = \sum_{d \mid i} d ^ 2 \phi(d)g(\frac{i}ozvdkddzhkzd)\\ 容易想到\sum_{d \mid i} \phi(d) = i, 所以如果可以提出d ^ 2那就完美了,我們可以另g(i) = i ^ 2,上式變成\\ \sum_{d \mid i} d ^ 2 \phi(d) \frac{i ^ 2}{d ^ 2} = i ^ 2 \sum_{d \mid i} \phi(d) = i ^ 3 \\S(n) = \sum_{i = 1} ^{n} i ^ 3 - \sum_{d = 1} ^{n} d ^ 2S(\frac{n}ozvdkddzhkzd)\\ = \frac{n ^ 2 (n + 1) ^ 2}{4} - \sum_{d = 1} ^{n} d ^ 2S(\frac{n}ozvdkddzhkzd)\\ i=1∑n?j=1∑n?lcm(i,j)=i=1∑n?j=1∑n?gcd(i,j)ij?=d=1∑n?i=1∑n?j=1∑n?dij?(gcd(i,j)==d)=d=1∑n?di=1∑dn??j=1∑dn??ij(gcd(i,j)==1)這里兩個的上屆都是dn?,所以我們可以分類討論一下,i>j,i==j,i<j,由于i>j,i<j可以合并,所以上式變成=d=1∑n?d(2i=1∑dn??i(j=1∑i?j×(gcd(i,j)==1))?1)根據歐拉函數定理,我們可以再次化簡=d=1∑n?d(2i=1∑dn??i(2i?(i)+(i==1)?)?1)=d=1∑n?di=1∑dn??i2?(i)接下來就是按照套路用杜教篩求解i=1∑dn??i2?(i)了S(n)=i=1∑n?i2?(i)=i=1∑n?f(i)i=1∑n?(f?g)(i)=i=1∑n?g(i)S(in?)g(1)S(n)=i=1∑n?(f?g)(i)?d=2∑n?g(i)S(dn?)(f?g)(i)=d∣i∑?f(d)g(di?)=d∣i∑?d2?(d)g(di?)容易想到d∣i∑??(d)=i,所以如果可以提出d2那就完美了,我們可以另g(i)=i2,上式變成d∣i∑?d2?(d)d2i2?=i2d∣i∑??(d)=i3S(n)=i=1∑n?i3?d=1∑n?d2S(dn?)=4n2(n+1)2??d=1∑n?d2S(dn?)
最終化簡的式子∑d=1ndS(nd)\sum_{d = 1} ^{n} dS(\frac{n}ozvdkddzhkzd)∑d=1n?dS(dn?)
代碼
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }const int N = 8e6 + 10, mod = 1000000007;ll phi[N], n, inv4, inv6, inv2;int prime[N], cnt;bool st[N];ll quick_pow(ll a, ll n, ll mod) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans; }void init() {phi[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;phi[i] = i - 1;}for(int j = 0; j < cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {phi[i * prime[j]] = phi[i] * prime[j];break;}phi[i * prime[j]] = phi[i] * (prime[j] - 1);}}for(int i = 1; i < N; i++) {phi[i] = (phi[i - 1] + 1ll * i * i % mod * phi[i] % mod) % mod;}inv2 = quick_pow(2, mod - 2, mod), inv4 = quick_pow(4, mod - 2, mod), inv6 = quick_pow(6, mod - 2, mod); }ll calc1(ll x) {x %= mod;return 1ll * x * x % mod * (x + 1) % mod * (x + 1) % mod * inv4 % mod; }ll calc2(ll x) {x %= mod;return x * (x + 1) % mod * (2ll * x + 1) % mod * inv6 % mod; }unordered_map<ll, ll> ans_phi;ll get_phi(ll x) {if(x < N) return phi[x];if(ans_phi.count(x)) return ans_phi[x];ll ans = calc1(x);for(ll l = 2, r; l <= x; l = r + 1) {r = x / (x / l);ans -= (calc2(r) - calc2(l - 1)) * get_phi(x / l) % mod;ans = (ans % mod + mod) % mod;}return ans_phi[x] = ans; }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);ll n = read();init();ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans += (l + r) % mod * (r - l + 1) % mod * inv2 % mod * get_phi(n / l) % mod;ans %= mod; }printf("%lld\n", ans);return 0; }總結
以上是生活随笔為你收集整理的[51 nod 1238] 最小公倍数之和 V3(杜教筛)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 颈纹是怎么形成的
- 下一篇: [51 nod 123] 最大公约数之和