日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 综合教程 >内容正文

综合教程

苹果公司股票价格时间序列的可视化分析

發布時間:2023/12/4 综合教程 48 生活家
生活随笔 收集整理的這篇文章主要介紹了 苹果公司股票价格时间序列的可视化分析 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

點贊、關注再看,養成良好習慣
Life is short, U need Python
初學Python,快來點我吧

案例:蘋果公司股票價格時間序列的可視化分析

作者:PyQuant
博客:https://blog.csdn.net/qq_33499889
慕課:https://mooc1-2.chaoxing.com/course/207443619.html
聲明:案例參考博雅大數據學院案例集

本案例適合作為大數據技術基礎課程中數據可視化部分的配套教學案例。通過本案例,能夠達到以下教學效果:

  • 培養學生對真實數據進行可視化分析的能力。

    • 案例中數據來源于蘋果公司2015-2019年的股票數據,進行股票數據漲跌的可視化分析。
  • 幫助學生進一步掌握常用圖表的繪制方法。

    • 案例中涉及到折線圖、散點圖、柱狀圖、直方圖、核密度圖和小提琴圖等。
  • 提高學生動手實踐能力。

    • 案例中使用Python中的兩個常用可視化工具Matplotlib和Seaborn,提高學生繪制常用圖表的實踐能力。

可視化分析在大數據分析中扮演著相當重要的角色。可視化可以使數據更為清晰地傳遞信息,使數據分析更為生動具體。Matplotlib是一個Python庫,用于2D繪圖,而Seaborn是Python基于Matplotlib的數據可視化的庫。Seaborn在Matplotlib的基礎上進行了更高級的封裝,從而使得作圖更加簡單方便,可以作出信息豐富且美觀的圖。本案例旨在幫助大家快速熟悉Matplotlib和Seaborn這兩個可視化工具的操作。

目錄

  1. 數據載入及預處理
  2. Matplotlib繪圖
  3. 面向對象API繪圖
  4. Seaborn繪圖

1. 數據載入及預處理

本案例選擇蘋果公司的股票作為分析對象,來進行股票漲跌的分析;數據集來源:Python代碼調取雅虎金融數據端口;其中數據集中每一列數據對應的含義如下表所示:

列名 類型 說明
Date Object 觀測日期
Open Float 開盤價格
High Float 最高成交價格
Low Float 最低成交價格
Close Float 收盤價格
Volume Int 交易量
Adj Close Float 調整后的收盤價格
  • 導入數據集
import pandas as pd
import numpy as np
import datetime
import pandas_datareader.data as pdr             # 事先安裝:pip install pandas-datareaderstart = datetime.date(2015,1,2) 
end = datetime.date(2019,12,31)
apple = pdr.get_data_yahoo('AAPL',start,end)
apple.head()
High Low Open Close Volume Adj Close
Date
2015-01-02 111.440002 107.349998 111.389999 109.330002 53204600.0 100.216454
2015-01-05 108.650002 105.410004 108.290001 106.250000 64285500.0 97.393181
2015-01-06 107.430000 104.629997 106.540001 106.260002 65797100.0 97.402374
2015-01-07 108.199997 106.699997 107.199997 107.750000 40105900.0 98.768150
2015-01-08 112.150002 108.699997 109.230003 111.889999 59364500.0 102.563072
apple.tail()
High Low Open Close Volume Adj Close
Date
2019-12-24 284.890015 282.920013 284.690002 284.269989 12119700.0 283.596924
2019-12-26 289.980011 284.700012 284.820007 289.910004 23280300.0 289.223602
2019-12-27 293.970001 288.119995 291.119995 289.799988 36566500.0 289.113831
2019-12-30 292.690002 285.220001 289.459991 291.519989 36028600.0 290.829773
2019-12-31 293.679993 289.519989 289.929993 293.649994 25201400.0 292.954712
apple_index = apple.index
mon = []
year = []
for item in apple_index:item = str(item)mon.append(int(item[5:7]))year.append(int(item[0:4]))
apple['month'] = mon
apple['year'] = year
apple.head()
High Low Open Close Volume Adj Close month year
Date
2015-01-02 111.440002 107.349998 111.389999 109.330002 53204600.0 100.216454 1 2015
2015-01-05 108.650002 105.410004 108.290001 106.250000 64285500.0 97.393181 1 2015
2015-01-06 107.430000 104.629997 106.540001 106.260002 65797100.0 97.402374 1 2015
2015-01-07 108.199997 106.699997 107.199997 107.750000 40105900.0 98.768150 1 2015
2015-01-08 112.150002 108.699997 109.230003 111.889999 59364500.0 102.563072 1 2015

2. Matplotlib繪圖

2.1 折線圖

折線圖 用于繪制連續型數據,展示數據變化的趨勢。

  • 將數據以年為單位進行分組,以每年收盤價格的平均值繪圖
%matplotlib inline
import matplotlib.pyplot as pltx = apple.groupby('year').Close.mean().index
y = apple.groupby('year').Close.mean().valuesplt.plot(x,y)
plt.xticks(x)plt.show()

分析:從圖中我們可以看出,蘋果公司2015-2019年的股票收盤價格變化趨勢,總體趨勢走高,但是我們注意到2015年,出現下降趨勢,但2016股票行情回暖并大幅度走高,且一直持續到2019年底。

備注plot()函數—x為橫坐標數據,y為縱坐標數據。除此之外,Matplotlib還提供了豐富的線形及其顏色,還可以調節線的寬度(linewidth),數據點的大小(markersize)及設置坐標軸的名字等。同時,可以利用grid()函數繪制網格線;默認為False,利用legend()函數設置圖例,使用其loc參數設置圖例的位置等。另外,Matplotlib允許多條折線繪制在一張圖中。

  • 美化 每年收盤價格的平均值曲線圖
plt.plot(x,y,label='Close Price')plt.grid(True)plt.xticks(x)
plt.legend(loc = 'upper left')
plt.title('Average Close Price in 2015-2019')
plt.xlabel('Year')
plt.ylabel('Average Close Price')plt.show()

  • 繪制2015-2019年期間年成交量平均值的折線圖
x1 = apple.groupby('year').Volume.mean().index
y1 = apple.groupby('year').Volume.mean().valuesplt.plot(x1,y1,color='red',marker='o',linestyle='dashed',label='Close Price',linewidth=2, markersize=12)
# plt.plot(x1, y1, 'r--',label='Close Price', linewidth=2, markersize=12)plt.xticks(x)
plt.legend(loc = 'upper right')
plt.title('Average volume in 2015-2019')
plt.xlabel('Year')
plt.ylabel('Average volume')
plt.grid(True)plt.show()

分析:此圖反映了2015-2019年間,蘋果公司股票交易量的變化趨勢,我們可以看出其交易量整體呈下降趨勢,雖2017年開始有所轉變,但2018年開始再次呈現下降趨勢。結合上一個圖,我們看出,雖然股票的價格升高,但是股票的成交量降低,所以由這兩個圖不能很明確的體現股票真正價值的變化,其股票價格的升高,可能是由于貨幣價值的變化,通貨膨脹等,具體原因需要結合更多的數據集進行分析。

  • 將數據以年為單位進行分組,把股票最低價格的平均值和最高價格的平均值繪制于同一個畫布上
x1 = apple.groupby('year').Low.mean().index
y1 = apple.groupby('year').Low.mean().values
y2 = apple.groupby('year').High.mean().valuesplt.plot(x1,y1, 'go-', label='High', linewidth=2)
plt.plot(x1,y2, 'rs--',  label='Low',linewidth=2)plt.xticks(x)
plt.title('Average Price in 2015-2019')
plt.xlabel('Year')
plt.ylabel('Average Price')
plt.legend(('High', 'Low'),loc='upper left')
plt.grid(True)plt.show()

分析:這里我們注意到,最高價格與最低價格之間的差距,2015年、2017年和2018年較大,這里也顯示了股票市場的不確定性。

2.2 散點圖

散點圖是數據點在直角坐標系平面上的分布圖,散點圖表示因變量隨自變量而變化的大致趨勢,常用于回歸分析中。

  • 繪制2015-2019年隨股票收盤價格的變化其成交量的散點圖
x = apple.Close
y = apple.Volumeplt.scatter(x,y)
#or plt.plot(x,y,'o')plt.title('Close Price and Volume in 2015-2019')
plt.xlabel('Close Price')
plt.ylabel('Volume')plt.show()

分析:此圖展示了2015-2019年隨著股票收盤價格的變化,股票成交量的分布和聚合情況。

  • 通過每個點的顏色來展示不同月份的收盤價格與成交量的分布,使用更多的參數對此散點圖進行美化

例如,可以設定參數alpha改變數據點的透明度,設定參數marker改變數據點的形狀,設定參數cmonth設置不同分類的顏色,并使用colorbar()繪制色階欄。

plt.scatter(x,y,marker = "^",c = apple['month'],alpha = 0.8)plt.grid(True)
plt.colorbar()
plt.title('Close Price and Volume in 2015-2019')
plt.xlabel('Close Price')
plt.ylabel('Volume')plt.show()

2.3 柱狀圖

柱狀圖是一種用矩形條表示分類數據的圖表,這些矩形條的高度或長度與它們所表示的值成比例。柱狀圖可以垂直繪制,也可以水平繪制。

  • 選擇2015年的數據,進行繪制每月股票收盤價格平均值的柱狀圖
a_2015 = apple.loc[apple['year'] == 2015]
x = a_2015.groupby('month').Close.mean().index
y = a_2015.groupby('month').Close.mean().valuesplt.bar(x,y,color = 'SkyBlue',hatch='o')plt.grid(True)
plt.xlabel('Month')
plt.ylabel('Close Price')
plt.title('Bar Chart of Close Price in 2015')plt.show()

分析:此柱狀圖表示2015年12個月收盤價格平均值的情況,從8月起,股票收盤價格開始較大幅下降。

備注bar()函數繪制柱狀圖,主要的參數x為x軸的位置序列;y為柱形圖的高度。參數hatch可以設置填充圖形。

  • 繪制2015年每月股票收盤價格和開盤價格平均值的橫向柱狀圖
x = a_2015.groupby('month').Close.mean().index
y1 = a_2015.groupby('month').Close.mean().values
y2 = a_2015.groupby('month').Open.mean().values
width = 0.8  plt.barh(x-width/2, y1,width/2,label='Close Price')
plt.barh(x, y2,width/2,label='Open Price')plt.xlabel('Price')
plt.ylabel('Month')
plt.legend(loc='upper center', bbox_to_anchor=(1.2,1))
plt.title('Close Price and Open Price in 2015')plt.show()

備注:利用legend()函數,設置其參數使圖例置于表格外以免遮擋圖形。

2.4 直方圖

直方圖又稱質量分布圖,由一系列高度不等的縱向條紋或線段表示數據分布的情況。

  • 使用2015年股票成交量的數據繪制直方圖
x = a_2015.Volumeplt.hist(x,bins = 20,density=0,facecolor='green', edgecolor='black',alpha=1, histtype='bar')plt.xlabel('Volume')
plt.ylabel('Probability')
plt.title('Histogram of Volume in 2015',fontsize = 16)plt.show()

分析:此圖展示了2015年股票交易量的分布直方圖。直方圖是用面積表示各組頻數的多少,矩形的高度表示每一組的頻數或頻率,寬度則表示各組的組距,因此其高度與寬度均有意義。我們看到柱狀圖與直方圖的形狀很相似,但是實際上的含義及用處并不一樣,直方圖主要表示頻率分布,其x軸為定量數據,而柱狀圖展示的是大小的比較,其x軸變量是分類數據。

備注hist()有很多參數,其中6個比較常用。x為輸入數據是必填,其他可選,包括bins:表示直方圖的柱數,默認為10;density:表示是否將得到的直方圖向量歸一化,默認為0;facecolor: 表示直方圖顏色;edgecolor: 表示直方圖邊框顏色;alpha: 表示透明度;histtype: 表示直方圖類型(barbarstackedstepstepfilled)。

2.5 箱線圖

箱線圖又稱為盒須圖、盒式圖或箱式圖,是一種用于顯示一組數據分散情況資料的統計圖,它能顯示出一組數據的最大非異常值、最小非異常值、中位數、及上下四分位數。

  • 繪制2015年蘋果股票開盤,收盤,最高及最低價格的分布
data = a_2015.groupby('month')['Open','Close','High','Low'].mean()plt.grid(True)plt.boxplot(x = data.values, labels = data.columns)
plt.title('Box Plot of Volume in 2015',fontsize = 16)plt.show()

分析:根據“箱子”的含義,我們可以輕松看到每類價格的中位數及分布情況。箱形圖不受異常值的影響,常用于識別異常值。箱式圖經常用于可視化分析中,包含很多信息。

3. 面向對象API繪圖

以上我們介紹的方法是函數方法做圖,即使用基本的Matplotlib命令,接下來我們介紹另一種方法,即面向對象API的方法,此法為創建圖的最佳方式。

3.1 創建子圖

Matplotlib可以通過add_subplot()新增子圖,指定figsizedpi參數來指定圖形大小,縱橫比和DPI來創建圖。

  • 在同一個畫布上均分成2*1的畫布進行繪圖。
x = a_2015.groupby('month').Close.mean().index
y1 = a_2015.groupby('month').Close.mean().values
y2 = a_2015.groupby('month').Volume.mean().valuesfig = plt.figure()
ax1 = fig.add_subplot(2,1,1)
ax1.plot(x, y1)ax2 = fig.add_subplot(2,1,2)
ax2.plot(x, y2)
ax2.grid(color='r', linestyle='--', linewidth=1,alpha=0.3)plt.show()

備注figure():創建一個空白畫布,此函數有3個常用參數,依次為num:表示此圖形的id,可為整型或者字符型;figsize:表示以英寸為單位的寬高; dpi:表示圖形分辨率,相同的figsizedpi越大則圖形越大;facecolor:表示背景色;edgecolor:邊框顏色;frameon:默認值True為繪制邊框,如果為False則不繪制邊框。其中,tight_layout()函數的目的是避免圖表之間的重疊。

  • 對上圖進行添加坐標軸名稱等信息
fig = plt.figure(num = "fig1",figsize=(8,6),dpi=60,facecolor="pink",edgecolor='green',frameon=True)ax1 = fig.add_subplot(2,1,1)
ax1.plot(x, y1)
ax1.set_xlabel('Month')
ax1.set_ylabel('Close Price')
ax1.set_title('Average Close Price in 2015')ax2 = fig.add_subplot(2,1,2)
ax2.plot(x, y2)
ax2.grid(color='r', linestyle='--', linewidth=1,alpha=0.3)
ax2.set_xlabel('Month')
ax2.set_ylabel('Volume')
ax2.set_title('Average Volume in 2015')plt.tight_layout()

備注:通過使用set_xlabel()set_ylabel()set_title()設置圖表的信息。

3.2 創建子區域

  • add_axes()函數可以為圖表新增子區域,該區域可以座落在figure內任意位置,且該區域可任意設置大小
x = a_2015.groupby('month').Close.mean().index
y1 = a_2015.groupby('month').Close.mean().values
y2 = a_2015.groupby('month').Volume.mean().valuesfig = plt.figure()left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
ax1 = fig.add_axes([left, bottom, width, height])
ax1.plot(x, y2, 'r')
ax1.set_title('Average Volume in 2015',fontsize = 15)
ax1.set_xlabel('Month')left, bottom, width, height = 0.25, 0.6, 0.25, 0.25
ax2 = fig.add_axes([left, bottom, width, height])
ax2.plot(x,y1, 'b')
ax2.set_title('Close Price')plt.show()

備注:Axes表示一個圖表,通過add_axes()函數設置子區域的相對位置。

  • 利用面向對象API的方法,繪制交易量和收盤價格的線圖
import numpy as npx = apple.groupby('year').Volume.mean().index
y1 = apple.groupby('year').Close.mean().values
y2 = apple.groupby('year').Volume.mean().valuesfig = plt.figure()ax1 = fig.add_subplot(111)
ax1.plot(x, y1,'r',label="Close Price")
ax1.legend(loc=1)
ax1.set_xlabel('Year')
ax1.set_ylabel('Y values for Close Price')ax2 = ax1.twinx() 
ax2.plot(x, y2, 'g',label = "Volume")
ax2.legend(loc=2)
ax2.set_ylabel('Y values for Volume')fig.suptitle('Close Price and Volume', fontsize=16)
plt.xticks(x)
plt.grid(True)plt.show()

備注:此圖為共享y軸的例子,共享表示的就是x軸使用同一刻度線,twinx()函數表示共享x軸,twiny()表示共享y軸。

4. Seaborn繪圖

Seaborn提供了很多高層封裝的函數,幫助數據分析人員快速繪制美觀的數據圖形。

  • 繪制2015年成交量的核密度估計
import seaborn as snssns.set()
sns.kdeplot(a_2015['Volume'],color="g",shade=True).set_title('KED of Volume in 2015',fontsize = 12)plt.show()

分析:核密度圖可以理解為直方圖的平滑曲線,是對真實的概率分布曲線進行的模擬。用于觀察數據的分布。

備注1:導入Seaborn包后,繪圖風格自動變為Seaborn風格。相較于Matplotlib代碼簡潔很多。

備注2set()函數表示使用Seaborn的默認設置參數。shade設置為True時,kde曲線下面的區域會進行陰影處理,默認為Falsecolor控制曲線及陰影的顏色

  • 繪制多維數據的核密度圖

例如:開盤價格,收盤價格與成交量的關系。

plt.figure(figsize=(6,6),dpi=100)plt.subplot(2, 1, 1)
sns.kdeplot(a_2015["Close"], a_2015["Volume"],color = 'r',shade=True,cbar=True)
plt.title('KED of Close Price and Volume in 2015',fontsize = 12)plt.subplot(2, 2, 3)
sns.kdeplot(a_2015["Open"], a_2015["Volume"],color = 'r')
plt.title("Volume", fontsize = 10)plt.subplot(2, 2, 4)
sns.kdeplot(a_2015["Close"], a_2015["Volume"],color = 'r')
plt.title("Close Price",fontsize = 10)
plt.tight_layout()plt.show()

備注shade設置陰影,cbar設置色階欄。

4.2 直方圖

Seaborn可以用distplot()函數直接把直方圖和核密度估計(KDE)一次性畫出來,并且KDE可以通過kde參數進行設置,默認為True;通過bins參數設置分段數量。

  • 導入Seaborn包后,繪制2015年股票成交量的直方圖和核密度圖
x = a_2015.Volumekde_kws = {"color": "g", "lw": 3, "label": "KDE"}
sns.distplot(x, kde = True,bins = 30,color = "r",kde_kws = kde_kws ) plt.title('Histogram for Volume', fontsize = 16)plt.show()

備注kde_kws是一個字典,可以設置KDE相關的參數。

  • 使用面向對象API的方法,繪制兩個子圖,分別表示2015年開盤價格和收盤價格的直方圖
x = a_2015.Open
y = a_2015.Closefig, (ax0, ax1) = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.5)          # 表格之間空間ax0 = sns.distplot(x,ax=ax0,rug=True,color = 'green') 
ax1 = sns.distplot(y,ax=ax1,rug=True,color = 'red') fig.suptitle('Volume and Close Price in 2015', fontsize = 16)plt.show()

分析:此圖展示了開盤與收盤價格的密度分布,總體來說,其分布基本類似。

備注rug設置是否生成觀測數值的小細條。

4.3 散點圖

Seaborn中可以使用scatterplot() 函數繪制散點圖。

  • 為了方便分析,我們新建一列tend,把2015年股票收盤價格小于2015年收盤價格平均值的日子設為0,大于及等于2015年平均值的日子設為1
ls = []
for item in a_2015.Close:if float(item) < a_2015.Close.mean():ls.append(0)else :ls.append(1)a_2015 = a_2015.assign(tend=ls)
a_2015.tail()
High Low Open Close Volume Adj Close month year tend
Date
2015-12-24 109.000000 107.949997 109.000000 108.029999 13570400.0 100.712036 12 2015 0
2015-12-28 107.690002 106.180000 107.589996 106.820000 26704200.0 99.584007 12 2015 0
2015-12-29 109.430000 106.860001 106.959999 108.739998 30931200.0 101.373940 12 2015 0
2015-12-30 108.699997 107.180000 108.580002 107.320000 25213800.0 100.050133 12 2015 0
2015-12-31 107.029999 104.820000 107.010002 105.260002 40912300.0 98.129669 12 2015 0
  • 繪制2015年收盤價格與成交量的散點圖
sns.scatterplot(x = 'Close', y = 'Volume', hue='month',data=a_2015)plt.title('Close VS. Volume in 2015') plt.show()

分析:此圖展示了2015年收盤價格與成交量之間的關系,由顏色我們可以看出,前半年的收盤股票價格普遍較高,此結果與我們之前的分析一致。

備注:參數hue用于指定額外的分組特征,其值為分組數據

  • 使用lmplot()函數可以得到兩個特征之間的線性回歸直線
lm = sns.lmplot(x = 'Close', y = 'Volume', data=a_2015)lm.fig.suptitle("Close VS. Volume in 2015", fontsize=12)plt.show()

4.4 聯合繪圖

Seaborn可以可視化兩個變量的雙變量分布,joinplot()函數可以顯示兩個變量之間的雙變量關系以及每個變量的單變量分布。

  • 繪制2015年收盤價格與開盤價格的聯合分布圖
sns.jointplot(x = 'Close', y = 'Open', data=a_2015)plt.show()

分析:此圖展示了2015年收盤價格與開盤價格之間的關系,我們可以知道呈明顯的正相關關系。jointplot()函數將直方圖和散點圖同時繪制出來。

備注:通過參數kind設置圖形的類型:scatterregresidkdehex

  • 為圖像添加回歸擬合直線
sns.jointplot(x = 'Close', y = 'Open', data=a_2015,kind="reg")plt.show()

  • 繪制2015年收盤價格和開盤價格聯合核密度圖
sns.jointplot(x = 'Close', y = 'Open', data=a_2015,color = 'g',kind="kde")plt.show()

  • 繪制2015年收盤價格和開盤價格散點圖,然后添加聯合密度分布圖
sns.jointplot(x = 'Close', y = 'Open', data=a_2015, color="k").plot_joint(sns.kdeplot, zorder=0, n_levels=6)plt.show()

備注plot_joint函數可以將很多繪圖形式放在同一張圖表中。

4.5 點對圖

pairplot()可以完成點對圖的繪制,多用于展示變量之間的相關性;對角線上的直方圖允許我們看到單個變量的分布,而上下三角形上的散點圖顯示了兩個變量之間的關系。

  • 繪制openclosehighlowvolume的點對圖
sns.pairplot(a_2015[['Open','Close','High','Low','Volume']],kind="reg", markers='+')plt.show()

分析:由圖可知,openclosehighlow之間均呈正相關關系,與volume相關性較不明顯。

備注:參數kind設置為reg時,每個散點圖將繪制線性回歸擬合模型圖像。

結論:由此可見,Seaborn提供的操作更為簡潔,提供的圖像更加多樣及美觀。

4.6 小提琴圖

小提琴圖是箱線圖和核密度圖的結合,在Seaborn中,使用violinplot()函數繪制。

  • 繪制小提琴圖
fig,ax=plt.subplots(nrows=2,ncols=2,figsize=(15,15))ax[0,0] = sns.violinplot(x='month', y = 'Close',data = a_2015,ax=ax[0,0])
ax[0,0].set_title("Violin chart")ax[0,1] = sns.violinplot(x='month', y = 'Close',hue ='tend',data = a_2015,ax=ax[0,1])
ax[0,1].set_title("Violin Chart with hue")ax[1,0] = sns.violinplot(x='month', y = 'Close',hue ='tend',split = True,data = a_2015,ax=ax[1,0])
ax[1,0].set_title("Violin Chart with hue side")ax[1,0] = sns.violinplot(x='year', y = 'Close',data = apple,ax=ax[1,1])
ax[1,1].set_title("Violin Chart for Close Price in 2015-2018")plt.show()

分析:此圖含有的信息量也有很多,圖一展示了2015年中12月,每個月的收盤價格的分布情況;圖二展示了,當有特征變量加入之后,收盤價格的分布情況,圖三為圖二的升級版,將特征變量分布在小提琴圖的兩側;圖四顯示了2013-2015年收盤價格的分布情況。

備注:參數hue用于指定額外的分組特征,其值為分組數據;如若想要將圖的分組分別繪制在箱式圖的兩邊, 使用split參數設置。

補充:

Matplotlib和Seaborn可視化中不同參數可以得到不同的效果,更加美觀的繪圖方法參見 官網。

  • Matplotlib官網:https://matplotlib.org/
  • Seaborn官網:https://seaborn.pydata.org/
  • Pandas官網:https://pandas.pydata.org/
  • Plotly官網:https://plot.ly/

  • 寫作不易,切勿白剽
  • 博友們的點贊關注就是對博主堅持寫作的最大鼓勵
  • 持續更新,未完待續…

總結

以上是生活随笔為你收集整理的苹果公司股票价格时间序列的可视化分析的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。