日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【HAOI2018】染色【反向二项式反演】【NTT卷积】

發布時間:2023/12/3 编程问答 38 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【HAOI2018】染色【反向二项式反演】【NTT卷积】 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

傳送門

題意:NNN個位置染MMM種顏色,恰好出現SSS次的顏色數量恰好為kkk時的愉悅度為wkw_kwk?,求所有方案的愉悅度之和。對100453580910045358091004535809取模。

N≤1e7N \leq 1e7N1e7,M≤1e5M \leq 1e5M1e5,S≤150S \leq 150S150

本題的惡心之處在于滿足顏色數量要求恰好為kkk。

試著求求至少為kkk的方案數。

一個顯然的想法:欽點kkk種顏色剛好填SSS次,剩下位置隨便填其他顏色。

即:

f(k)=(Mk)(NS)(N?SS)......(N?(k?1)SS)(M?k)N?kSf(k)=\binom{M}{k}\binom{N}{S}\binom{N-S}{S}......\binom{N-(k-1)S}{S}(M-k)^{N-kS}f(k)=(kM?)(SN?)(SN?S?)......(SN?(k?1)S?)(M?k)N?kS

=(Mk)N!S!(N?S)!(N?S)!S!(N?2S)!......[N?(k?1)S]!S!(N?kS)!(M?k)N?kS=\binom{M}{k}\frac{N!}{S!(N-S)!}\frac{(N-S)!}{S!(N-2S)!}......\frac{[N-(k-1)S]!}{S!(N-kS)!}(M-k)^{N-kS}=(kM?)S!(N?S)!N!?S!(N?2S)!(N?S)!?......S!(N?kS)![N?(k?1)S]!?(M?k)N?kS

=(Mk)N!(M?k)N?kS(S!)k(N?kS)!=\binom{M}{k}\frac{N!(M-k)^{N-kS}}{(S!)^k(N-kS)!}=(kM?)(S!)k(N?kS)!N!(M?k)N?kS?

雖然很鬼畜,但是可以快速求出來。

但這個求出來是假的,因為剩下位置填其他顏色的時候一不小心就剛好填了SSS次,但這個在之后會重復計算。也就是說,一個方案會計算(實際剛好為S的顏色數k)\binom{實際剛好為S的顏色數}{k}(kS?)次。所以似乎沒有組合意義。

不過還是能用的。

設答案即恰好kkk種的方案數g(k)g(k)g(k)

為了描述方便,設n=min(n,N/S)n=min(n,N/S)n=min(n,N/S),即填SSS個的顏色最多多少個。

得到關系式

f(k)=∑i=kn(ik)g(i)f(k)=\sum_{i=k}^n\binom{i}{k}g(i)f(k)=i=kn?(ki?)g(i)

另一個方向的二項式反演?

g(k)=∑i=kn[i?k=0](ik)g(i)g(k)=\sum_{i=k}^n[i-k=0]\binom{i}{k}g(i)g(k)=i=kn?[i?k=0](ki?)g(i)

g(k)=∑i=kn∑j=0i?k(?1)j(i?kj)(ik)g(i)g(k)=\sum_{i=k}^n\sum_{j=0}^{i-k}(-1)^j\binom{i-k}{j}\binom{i}{k}g(i)g(k)=i=kn?j=0i?k?(?1)j(ji?k?)(ki?)g(i)

你會發現用之前的路子行不通了

為了找到這一步怎么推,你可以把結論代回去,然后你得到了這個東西:

(i?kj)(ik)=(ij+k)(j+kk)\binom{i-k}{j}\binom{i}{k}=\binom{i}{j+k}\binom{j+k}{k}(ji?k?)(ki?)=(j+ki?)(kj+k?)

理性證明:

(i?k)!j!(i?j?k)!i!k!(i?k)!=i!(j+k)!(i?j?k)!(j+k)!j!k!\frac{(i-k)!}{j!(i-j-k)!}\frac{i!}{k!(i-k)!}=\frac{i!}{(j+k)!(i-j-k)!}\frac{(j+k)!}{j!k!}j!(i?j?k)!(i?k)!?k!(i?k)!i!?=(j+k)!(i?j?k)!i!?j!k!(j+k)!?

感性證明:

iii個數選j+kj+kj+k個數再選kkk個數,等價于直接選kkk個再在剩下的選出jjj個作為中間商賺差價

g(k)=∑i=kn∑j=0i?k(?1)j(ij+k)(j+kk)g(i)g(k)=\sum_{i=k}^n\sum_{j=0}^{i-k}(-1)^j\binom{i}{j+k}\binom{j+k}{k}g(i)g(k)=i=kn?j=0i?k?(?1)j(j+ki?)(kj+k?)g(i)

jjj加上kkk

g(k)=∑i=kn∑j=ki(?1)j?k(ij)(jk)g(i)g(k)=\sum_{i=k}^n\sum_{j=k}^{i}(-1)^{j-k}\binom{i}{j}\binom{j}{k}g(i)g(k)=i=kn?j=ki?(?1)j?k(ji?)(kj?)g(i)

交換求和順序

g(k)=∑j=kn(?1)j?k(jk)∑i=jn(ij)g(i)g(k)=\sum_{j=k}^n(-1)^{j-k}\binom{j}{k}\sum_{i=j}^{n}\binom{i}{j}g(i)g(k)=j=kn?(?1)j?k(kj?)i=jn?(ji?)g(i)

g(k)=∑j=kn(?1)j?k(jk)f(j)g(k)=\sum_{j=k}^n(-1)^{j-k}\binom{j}{k}f(j)g(k)=j=kn?(?1)j?k(kj?)f(j)

g(k)=∑i=kn(?1)i?k(ik)f(i)g(k)=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}f(i)g(k)=i=kn?(?1)i?k(ki?)f(i)

回到之前的問題,我們現在要求所有g(k)g(k)g(k)

套路性的拆組合數

g(k)=∑i=kn(?1)i?ki!k!(i?k)!f(i)g(k)=\sum_{i=k}^n(-1)^{i-k}\frac{i!}{k!(i-k)!}f(i)g(k)=i=kn?(?1)i?kk!(i?k)!i!?f(i)

k!g(k)=∑i=kn(?1)i?k(i?k)!i!f(i)k!g(k)=\sum_{i=k}^n\frac{(-1)^{i-k}}{(i-k)!}i!f(i)k!g(k)=i=kn?(i?k)!(?1)i?k?i!f(i)

出現了!卷積君!

翻一下i!f(i)i!f(i)i!f(i)

k!g(k)=∑i=kn(?1)i?k(i?k)!(n?i)!f(n?i)k!g(k)=\sum_{i=k}^n\frac{(-1)^{i-k}}{(i-k)!}(n-i)!f(n-i)k!g(k)=i=kn?(i?k)!(?1)i?k?(n?i)!f(n?i)

卷出來是n?kn-kn?k,再翻一下除以k!k!k!就是答案。

#include <iostream> #include <cstdio> #include <cstring> #include <cctype> #include <algorithm> #define MAXN 262144 #define MAXM 10000005 using namespace std; const int MOD=1004535809;//479*2^21+1 typedef long long ll; int fac[MAXM],finv[MAXM]; inline int qpow(int a,int p) {int ans=1;while (p){if (p&1) ans=(ll)ans*a%MOD;a=(ll)a*a%MOD;p>>=1;}return ans; } #define inv(x) qpow(x,MOD-2) inline int add(const int& x,const int& y){return x+y>=MOD? x+y-MOD:x+y;} inline int dec(const int& x,const int& y){return x<y? x-y+MOD:x-y;} int r[MAXN],rt[2][22]; inline void init(const int& l){for (int i=0;i<(1<<l);i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));} void NTT(int* a,int l,int type) {int lim=1<<l;for (int i=0;i<lim;i++) if (i<r[i]) swap(a[i],a[r[i]]);for (int L=0;L<l;L++){int mid=1<<L,len=mid<<1;int Wn=rt[type][L+1];for (int s=0;s<lim;s+=len)for (int k=0,w=1;k<mid;k++,w=(ll)w*Wn%MOD){int x=a[s+k],y=(ll)w*a[s+mid+k]%MOD;a[s+k]=add(x,y);a[s+mid+k]=dec(x,y);}}if (type){int t=inv(lim);for (int i=0;i<lim;i++) a[i]=(ll)a[i]*t%MOD;} } int f[MAXN],g[MAXN]; int main() {rt[0][21]=qpow(3,479);rt[1][21]=inv(rt[0][21]);for (int i=20;i>=0;i--) {rt[0][i]=(ll)rt[0][i+1]*rt[0][i+1]%MOD;rt[1][i]=(ll)rt[1][i+1]*rt[1][i+1]%MOD;}int n,m,s;scanf("%d%d%d",&n,&m,&s);int lim=min(m,n/s),N=max(n,m);fac[0]=1;for (int i=1;i<=N;i++) fac[i]=(ll)fac[i-1]*i%MOD;finv[N]=inv(fac[N]);for (int i=N-1;i>=0;i--) finv[i]=(ll)finv[i+1]*(i+1)%MOD;int l=0;while ((1<<l)<=(lim<<1)) ++l;init(l);for (int i=0;i<=lim;i++) f[i]=(ll)fac[m]*fac[n]%MOD*qpow(m-i,n-s*i)%MOD*finv[m-i]%MOD*finv[n-s*i]%MOD*qpow(finv[s],i)%MOD;reverse(f,f+lim+1);for (int i=0;i<=lim;i++) g[i]=((i&1)? MOD-finv[i]:finv[i]);NTT(f,l,0);NTT(g,l,0);for (int i=0;i<(1<<l);i++) f[i]=(ll)f[i]*g[i]%MOD;NTT(f,l,1);reverse(f,f+lim+1);for (int i=0;i<=lim;i++) f[i]=(ll)f[i]*finv[i]%MOD;int ans=0;for (int i=0;i<=lim;i++){int w;scanf("%d",&w);ans=add(ans,(ll)w*f[i]%MOD);} // for (int i=0;i<=lim;i++) // { // int sum=0; // for (int j=i;j<=lim;j++) sum=add(sum,(ll)(((j-i)&1)? MOD-fac[j]:fac[j])*finv[j-i]%MOD*f[j]%MOD); // int w; // scanf("%d",&w); // ans=add(ans,(ll)w*finv[i]%MOD*sum%MOD); // }printf("%d\n",ans);return 0; } 創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎

總結

以上是生活随笔為你收集整理的【HAOI2018】染色【反向二项式反演】【NTT卷积】的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 男女国产视频 | 欧美videos另类精品 | 中文字幕av片 | 伊人网大 | 96精品在线 | 老熟妇仑乱视频一区二区 | 国产免费午夜 | 国产激情在线观看 | 中国一级特黄毛片大片 | 在线观看日韩精品 | 国产精品入口麻豆九色 | 亚洲色图另类 | 一级黄色aa| 亚洲午夜精品久久久久久人妖 | 久久夜夜操 | 性欧美videos高清hd4k | 日干夜干天天干 | 亚洲精品在线视频 | 日韩女优网站 | 影音先锋中文字幕资源 | 日本精品在线观看 | 免费观看成人 | 成人免费观看cn | 欧美日韩成人一区二区三区 | 啪啪网页| 欧美成人性生活片 | 伊人网大香 | 亚洲综合免费观看高清完整版在线 | 6080黄色 | 欧美色图一区二区三区 | ww黄色| 热玖玖| 黄色一级视频免费看 | 日韩黄色一区二区 | 四色成人av永久网址 | 欧美sese| 久久久精品美女 | 狠狠做深爱婷婷久久综合一区 | 中文字幕理伦片免费看 | 黄页在线观看 | 国产乱码一区二区 | 天天激情综合 | 精品久久一区二区 | 国产亚洲精品久久777777 | 国产一区二区三区观看 | 已满十八岁免费观看全集动漫 | 影音先锋国产精品 | 少妇免费视频 | 天堂网2018| 久久精品欧美一区二区三区不卡 | 69xx视频在线观看 | 美女视频黄色免费 | 久久久久久网站 | 国产欧美综合一区二区三区 | 海角国产乱辈乱精品视频 | 露脸啪啪清纯大学生美女 | 久久综合区 | 精品人妻伦一二三区久 | 国产一区二区三区免费播放 | 涩涩网站在线看 | 成人激情站 | 国产黄色免费 | 欧美亚洲日本在线 | 亚洲在线观看免费视频 | 久久九九久久九九 | 精品久草 | 国产精品久久无码一三区 | 精品日韩一区二区三区 | 黄色成人在线免费观看 | 成人高潮片 | 日日操夜夜干 | 国产精品一区二区免费看 | 天天操夜操| 国产三级理论片 | 三上悠亚ssⅰn939无码播放 | 在线精品一区 | 国产精品一级二级三级 | 蜜桃视频在线网站 | av免费毛片 | 成人午夜在线免费观看 | 五月天啪啪 | 日韩专区中文字幕 | 色多多视频在线观看 | 久久不射影院 | 又色又爽又高潮免费视频国产 | 人人妻人人爽人人澡人人精品 | 久久久无码人妻精品无码 | 伊人96| 超级黄色片 | 97国产一区 | 麻豆91在线 | 久久精品视频网站 | 欧美激情在线看 | 中国男人操女人 | 国产刺激视频 | 国产xxxxxx| 午夜国产 | 91n视频 | av爽妇网|