日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Orac and LCM #641(div2) c题--求质因数次小指数

發布時間:2023/12/3 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Orac and LCM #641(div2) c题--求质因数次小指数 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Orac and LCM cf地址

For the multiset of positive integers s={s1,s2,…,sk}, define the Greatest Common Divisor (GCD) and Least Common Multiple (LCM) of s as follow:

gcd(s) is the maximum positive integer x, such that all integers in s are divisible on x.

lcm(s) is the minimum positive integer x, that divisible on all integers from s.
For example, gcd({8,12})=4,gcd({12,18,6})=6 and lcm({4,6})=12. Note that for any positive integer x, gcd({x})=lcm({x})=x.

Orac has a sequence a with length n. He come up with the multiset t={lcm({ai,aj}) | i<j}, and asked you to find the value of gcd(t) for him. In other words, you need to calculate the GCD of LCMs of all pairs of elements in the given sequence.

Input
The first line contains one integer n (2≤n≤100000).

The second line contains n integers, a1,a2,…,an (1≤ai≤200000).

Output
Print one integer: gcd({lcm({ai,aj}) | i<j}).

Examples
inputCopy
2
1 1
outputCopy
1
inputCopy
4
10 24 40 80
outputCopy
40
inputCopy
10
540 648 810 648 720 540 594 864 972 648
outputCopy
54
Note
For the first example, t={lcm({1,1})}={1}, so gcd(t)=1.

For the second example, t={120,40,80,120,240,80}, and it’s not hard to see that gcd(t)=40.

題目大意: 兩兩求最小公倍數,然后得到集合,求最大公因數。

思路: 求質因數次小的指數。
注意:當有某個質因數的個數為n的的時候,應該any*=次小指數
當為n-1的時候 應該為any*=最小指數。

直接把0算進去應該不用考慮這兩種情況了

我的代碼:

#include <cstdio> #include <cstring> #include <string> #include <cmath> #include <iostream> #include <algorithm> #include <queue> #include <cstdlib> #include <stack> #include <vector> #include <set> #include <map> #include <bitset> #define INF 0x3f3f3f3f3f3f3f3f #define FILL(a,b) (memset(a,b,sizeof(a))) #define re register #define lson rt<<1 #define rson rt<<1|1 #define lowbit(a) ((a)&-(a)) #define ios std::ios::sync_with_stdio(false);std::cin.tie(0);std::cout.tie(0); #define fi first #define rep(i,n) for(int i=0;(i)<(n);i++) #define rep1(i,n) for(int i=1;(i)<=(n);i++) #define se secondusing namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int,int > pii; const ll mod=104857601; const int N =2e5+10; const double eps = 1e-6; const double pi=acos(-1); int gcd(int a,int b){return !b?a:gcd(b,a%b);} int dx[4]={-1,0,1,0} , dy[4] = {0,1,0,-1}; int a[N]; int p[N], cnt; bool st[N];void get_primes(int n) {for (int i = 2; i <= n; i ++ ){if (!st[i]) p[cnt ++ ] = i;for (ll j = 0; p[j] <= n / i; j ++ ){st[p[j] * i] = true;if (i % p[j] == 0) break;}} }int pow1(int a,int b) {ll any=1;while(b){if(b&1) any*=a;a*=a;b>>=1;}return any; }int d1[N]; int d2[N]; int d3[N]; int main() {get_primes(N);int n;scanf("%d",&n);for(int i=1;i<=n;i++){scanf("%d",&a[i]);}if(n==2){ printf("%lld",ll(a[1]/gcd(a[1],a[2]))*a[2]);return 0;}for(int i=1;i<=n;i++){for(int j=0;j<cnt;j++){if(a[i]<p[j]||a[i]<p[j]*p[j]) break;if(a[i]%p[j]==0){int x=0;d3[p[j]]++;while(a[i]%p[j]==0){a[i]/=p[j];x++;}if(x<=d1[p[j]]||d1[p[j]]==0){d2[p[j]]=d1[p[j]];d1[p[j]]=x;}else if(x<d2[p[j]]||d2[p[j]]==0){d2[p[j]]=x;}}}if(a[i]>1){d3[a[i]]++;int x=1;if(x<=d1[a[i]]||d1[a[i]]==0){d2[a[i]]=d1[a[i]];d1[a[i]]=x;}else if(x<d2[a[i]]||d2[a[i]]==0){d2[a[i]]=x;}}}ll any=1;for(int i=0;i<200000;i++){if(d3[i]==n) any*=pow1(i,d2[i]);else if(d3[i]==n-1) any*=pow1(i,d1[i]);}printf("%lld\n",any);return 0; }

大神代碼:優美的求次小指數,在最小指數的基礎上求。

#include <bits/stdc++.h>using namespace std;typedef long long ll;ll n,d[100007],a,b;int main() {cin>>n;cin>>d[1]>>d[2];a=__gcd(d[1],d[2]);b=d[1]*d[2];for(int i=3;i<=n;i++){cin>>d[i];b=__gcd(a*d[i],b);a=__gcd(a,d[i]);}cout<<b/a;return 0; }

總結

以上是生活随笔為你收集整理的Orac and LCM #641(div2) c题--求质因数次小指数的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。