日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

CF961G Partitions

發布時間:2023/12/3 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 CF961G Partitions 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

CF961G Partitions

題目描述

Solution

推式子:
AnsAnsAns
=∑wi∑s=0n(n?1s?1){n?sk?1}=\sum w_i\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right ) \left\{ \begin{aligned} n-s \\ k-1 \end{aligned} \right\}=wi?s=0n?(n?1s?1?){n?sk?1?}

把前面的wiw_iwi?先扔掉。

=∑s=0n(n?1s?1)∑i=0k?1(?1)i(k?i?1)n?si!(k?i?1)!s=\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right ) \sum_{i=0}^{k-1}\frac{(-1)^i(k-i-1)^{n-s}}{i!(k-i-1)!}s=s=0n?(n?1s?1?)i=0k?1?i!(k?i?1)!(?1)i(k?i?1)n?s?s
=∑i=0k?1(?1)ii!(k?i?1)!∑s=0n(n?1s?1)(k?i?1)n?ss=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}s=i=0k?1?i!(k?i?1)!(?1)i?s=0n?(n?1s?1?)(k?i?1)n?ss
=∑i=0k?1(?1)ii!(k?i?1)!∑s=0n(n?1s?1)(k?i?1)n?s+(n?1s?1)(k?i?1)n?s(s?1)=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}+\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}(s-1)=i=0k?1?i!(k?i?1)!(?1)i?s=0n?(n?1s?1?)(k?i?1)n?s+(n?1s?1?)(k?i?1)n?s(s?1)
=∑i=0k?1(?1)ii!(k?i?1)!∑s=0n(n?1s?1)(k?i?1)n?s+(n?2s?2)(k?i?1)n?s(n?1)=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}+\left ( \begin{aligned} n-2 \\ s-2 \end{aligned} \right )(k-i-1)^{n-s}(n-1)=i=0k?1?i!(k?i?1)!(?1)i?s=0n?(n?1s?1?)(k?i?1)n?s+(n?2s?2?)(k?i?1)n?s(n?1)
=∑i=0k?1(?1)ii!(k?i?1)!(k?i)n?1+(n?1)(k?i)n?2=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}(k-i)^{n-1}+(n-1)(k-i)^{n-2}=i=0k?1?i!(k?i?1)!(?1)i?(k?i)n?1+(n?1)(k?i)n?2
=∑i=0k?1(?1)ii!(k?i?1)!+(n+k?i?1)(k?i)n?2=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}+(n+k-i-1)(k-i)^{n-2}=i=0k?1?i!(k?i?1)!(?1)i?+(n+k?i?1)(k?i)n?2

發現是一個卷積形式,直接NumberTheoreticTransformNumber\;\;Theoretic\;\;TransformNumberTheoreticTransform計算即可。

但其實上面的式子還有一個更簡單的表達方法:
Ans=∑wi({nk}+(n?1){n?1k})Ans=\sum w_i(\left\{ \begin{aligned} n \\ k \end{aligned} \right\}+(n-1)\left\{ \begin{aligned} n-1 \\ k\;\;\; \end{aligned} \right\}) Ans=wi?({nk?}+(n?1){n?1k?})

這個式子可以用組合意義簡單解釋。

因此總時間復雜度為O(nlgn)O(nlgn)O(nlgn)

#include <vector> #include <list> #include <map> #include <set> #include <deque> #include <queue> #include <stack> #include <bitset> #include <algorithm> #include <functional> #include <numeric> #include <utility> #include <sstream> #include <iostream> #include <iomanip> #include <cstdio> #include <cmath> #include <cstdlib> #include <cctype> #include <string> #include <cstring> #include <ctime> #include <cassert> #include <string.h> //#include <unordered_set> //#include <unordered_map> //#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B) #define PB(A) push_back(A) #define SIZE(A) ((int)A.size()) #define LEN(A) ((int)A.length()) #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define fi first #define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; } template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll; typedef unsigned long long ull; typedef long double lod; typedef pair<int,int> PR; typedef vector<int> VI;const lod eps=1e-11; const lod pi=acos(-1); const int oo=1<<30; const ll loo=1ll<<62; const int mods=1e9+7; const int G=3; const int Gi=(mods+1)/G; const int MAXN=600005; const int INF=0x3f3f3f3f;//1061109567 /*--------------------------------------------------------------------*/ inline int read() {int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f; } int fac[MAXN],inv[MAXN]; int quick_pow(int x,int y) {int ret=1;for (;y;y>>=1){if (y&1) ret=1ll*ret*x%mods;x=1ll*x*x%mods;}return ret; } int upd(int x,int y){ return x+y>=mods?x+y-mods:x+y; } int solve(int n,int m) {int ret=0;for (int i=0;i<=m;i++)ret=upd(ret,1ll*(i&1?mods-1:1)*inv[i]%mods*quick_pow(m-i,n)%mods*inv[m-i]%mods);return ret; } int main() {int n=read(),m=read(),sum=0;for (int i=1;i<=n;i++) sum=upd(sum,read());fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mods;inv[n]=quick_pow(fac[n],mods-2);for (int i=n-1;i>=0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mods;printf("%d\n",1ll*sum*upd(solve(n,m),1ll*(n-1)*solve(n-1,m)%mods)%mods);return 0; }

總結

以上是生活随笔為你收集整理的CF961G Partitions的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。