【矩阵乘法】递推(ssl 1532)
遞推
ssl 1532
題目大意
給出數(shù)列a0,a1…ana_0,a_1…a_na0?,a1?…an?和fff的前n?1n-1n?1項(xiàng)f0,f1…fn?1f_0,f_1…f_{n-1}f0?,f1?…fn?1?
fi=a0?fi?n+a1?fi?(n?1)+...+an?1?fi?1+anf_i=a_0*f_{i-n}+a_1*f_{i-(n-1)}+...+a_{n-1}*f_{i-1}+a_nfi?=a0??fi?n?+a1??fi?(n?1)?+...+an?1??fi?1?+an?
現(xiàn)在讓你求fkf_kfk?(結(jié)果對(duì)9973取模)
輸入樣例
2 10 1 1 0 0 1輸出樣例
55數(shù)據(jù)范圍
1?n?k?10181?ai,fi?1041\leqslant n\leqslant k\leqslant10^{18}\\1\leqslant a_i,fi\leqslant10^41?n?k?10181?ai?,fi?104
解題思路
k較大,無法直接遞推,我們考慮矩陣乘法
設(shè)矩陣
[fi?nfi?(n?1)…fi?11]\begin{bmatrix} f_{i-n} &f_{i-(n-1)} & … & f_{i-1} & 1 \end{bmatrix}[fi?n??fi?(n?1)??…?fi?1??1?]
fi?n?fi?2f_{i-n}-f_{i-2}fi?n??fi?2?直接等于下一位
fi?1f_{i-1}fi?1?就是前面n項(xiàng)乘對(duì)應(yīng)的a,然后加上最后一個(gè)1乘ana_nan?
1不變
得出需要乘的矩陣后快速冪即可
代碼
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define ll long long #define wyc 9973 ll n, k; struct matrix {ll n, m, a[100][100];matrix operator *(matrix const &b)const{matrix c;c.n = n;c.m = b.m;for (int i = 1; i <= c.n; ++i)for (int j = 1; j <= c.m; ++j)c.a[i][j] = 0;for (int i = 1; i <= c.n; ++i)for (int k = 1; k <= m; ++k)for (int j = 1; j <= c.m; ++j)c.a[i][j] = (c.a[i][j] + a[i][k] * b.a[k][j] % wyc) % wyc;return c;} }A, B; void Counting(ll g) {while(g){if (g&1) A = A * B;B = B * B;g>>=1;} } int main() {scanf("%lld%lld", &n, &k);B.n = B.m = A.m = n + 1;A.n = 1;for (int i = 1; i <= n + 1; ++i){scanf("%lld", &B.a[i][n]);//前n個(gè)數(shù)乘上對(duì)應(yīng)的aif (i < n) B.a[i + 1][i] = 1;//等于下一個(gè)}B.a[n + 1][n + 1] = 1;//最后一個(gè)afor (int i = 1; i <= n; ++i)scanf("%lld", &A.a[1][i]);A.a[1][n + 1] = 1;Counting(k);printf("%lld", A.a[1][1]);return 0; }總結(jié)
以上是生活随笔為你收集整理的【矩阵乘法】递推(ssl 1532)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: cisco路由器时间要怎么设置如何更换c
- 下一篇: 【矩阵乘法】Quad Tiling(po