日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

为什么梯度反方向是函数下降最快的方向

發布時間:2023/12/3 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 为什么梯度反方向是函数下降最快的方向 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

轉載自??為什么梯度反方向是函數下降最快的方向

為什么梯度反方向是函數下降最快的方向?

剛接觸梯度下降這個概念的時候,是在學習機器學習算法的時候,很多訓練算法用的就是梯度下降,然后資料和老師們也說朝著梯度的反方向變動,函數值下降最快,但是究其原因的時候,很多人都表達不清楚。所以我整理出自己的理解,從方向導數這個角度把這個結論證明出來,讓我們知其然也知其所以然~

下面我一開始不提梯度的概念,完全根據自己的理解進行下文的梳理,一步一步推出梯度的來歷:

  • 導數

導數的幾何意義可能很多人都比較熟悉: 當函數定義域和取值都在實數域中的時候,導數可以表示函數曲線上的切線斜率。 除了切線的斜率,導數還表示函數在該點的變化率。

將上面的公式轉化為下面圖像為:

(來自維基百科)

直白的來說,導數代表了在自變量變化趨于無窮小的時候,函數值的變化與自變量變化的比值代表了導數,幾何意義有該點的切線。物理意義有該時刻的(瞬時)變化率...

注意在一元函數中,只有一個自變量變動,也就是說只存在一個方向的變化率,這也就是為什么一元函數沒有偏導數的原因。

?

  • 偏導數

既然談到偏導數,那就至少涉及到兩個自變量,以兩個自變量為例,z=f(x,y) . 從導數到偏導數,也就是從曲線來到了曲面. 曲線上的一點,其切線只有一條。但是曲面的一點,切線有無數條。

而我們所說的偏導數就是指的是多元函數沿坐標軸的變化率.

指的是函數在y方向不變,函數值沿著x軸方向的變化率

指的是函數在x方向不變,函數值沿著y軸方向的變化率

對應的圖像形象表達如下:

那么偏導數對應的幾何意義是是什么呢?

  • 偏導數就是曲面被平面所截得的曲面在點處的切線對x軸的斜率

  • 偏導數就是曲面被平面所截得的曲面在點處的切線對y軸的斜率

可能到這里,讀者就已經發現偏導數的局限性了,原來我們學到的偏導數指的是多元函數沿坐標軸的變化率,但是我們往往很多時候要考慮多元函數沿任意方向的變化率,那么就引出了方向導數.

?

  • 方向導數

終于引出我們的重頭戲了,方向導數,下面我們慢慢來走進它

假設你站在山坡上,相知道山坡的坡度(傾斜度)

山坡圖如下:

假設山坡表示為,你應該已經會做主要倆個方向的斜率.

y方向的斜率可以對y偏微分得到.

同樣的,x方向的斜率也可以對x偏微分得到

那么我們可以使用這倆個偏微分來求出任何方向的斜率(類似于一個平面的所有向量可以用倆個基向量來表示一樣)

現在我們有這個需求,想求出u方向的斜率怎么辦.假設為一個曲面,為定義域中一個點,單位向量的斜率,其中是此向量與x軸正向夾角.單位向量u可以表示對任何方向導數的方向.如下圖:

那么我們來考慮如何求出u方向的斜率,可以類比于前面導數定義,得出如下:

?

設為一個二元函數,為一個單位向量,如果下列的極限值存在

此方向導數記為

則稱這個極限值是沿著u方向的方向導數,那么隨著的不同,我們可以求出任意方向的方向導數.這也表明了方向導數的用處,是為了給我們考慮函數對任意方向的變化率.

在求方向導數的時候,除了用上面的定義法求之外,我們還可以用偏微分來簡化我們的計算.

表達式是:(至于為什么成立,很多資料有,不是這里討論的重點)

那么一個平面上無數個方向,函數沿哪個方向變化率最大呢?

目前我不管梯度的事,我先把表達式寫出來:

設,

那么我們可以得到:

(α為向量與向量之間的夾角)

那么此時如果要取得最大值,也就是當為0度的時候,也就是向量I(這個方向是一直在變,在尋找一個函數變化最快的方向)與向量A(這個方向當點固定下來的時候,它就是固定的)平行的時候,方向導數最大.方向導數最大,也就是單位步伐,函數值朝這個反向變化最快.

好了,現在我們已經找到函數值下降最快的方向了,這個方向就是和向量相同的方向.那么此時我把A向量命名為梯度(當一個點確定后,梯度方向是確定的),也就是說明了為什么梯度方向是函數變化率最大的方向了!!!(因為本來就是把這個函數變化最大的方向命名為梯度)

總結

以上是生活随笔為你收集整理的为什么梯度反方向是函数下降最快的方向的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 国产精品久久久久久久久免费软件 | 欧美伦理在线观看 | 91传媒入口 | 无码人妻丰满熟妇啪啪 | 亚州精品国产精品乱码不99按摩 | 91国产高清 | 国产精品蜜臀av | 一个色综合导航 | 国v精品久久久网 | 亚洲精品综合 | 极品美女扒开粉嫩小泬 | 中文字幕欧美在线 | 国产夜色视频 | 国产成人久久777777 | 视频黄页在线观看 | 日本一本不卡 | 啄木乌欧美一区二区三区 | 天堂视频一区二区 | 91久久伊人 | 豆花在线视频 | 国产13页 | 97九色 | 色涩色| 午夜免费观看视频 | 午夜黄视频 | 九色国产 | 国产偷人爽久久久久久老妇app | 成人在线短视频 | 亚洲播放器 | 男人天堂怡红院 | 人妻精品一区二区三区 | 国产精品一区二区在线播放 | 精品久久久一区 | 亚洲一区二区三区高清 | 日韩国产高清在线 | 久久精品免费观看 | 欧美专区 日韩专区 | 一区二区天堂 | 少妇人妻一区二区 | 884aa四虎影成人精品一区 | 97香蕉碰碰人妻国产欧美 | 成人激情av| 天堂中文字幕免费一区 | 欧美高清a | 激情四射综合网 | 午夜视频免费在线观看 | 毛片综合| 午夜伊人网 | 国产免费成人在线视频 | 激情a| 97热视频 | 国产精品男人的天堂 | 国产免费内射又粗又爽密桃视频 | 久久中文网 | 日本一区精品视频 | www日韩欧美 | 欧美成人秋霞久久aa片 | 国产精品videossex国产高清 | 美女av在线播放 | 黄页嫩草 | 伊人青青草原 | 日本不卡一区二区三区 | 精品看片| 中文字幕第一区综合 | 中文字幕人妻无码系列第三区 | 免费观看日批视频 | av电影在线观看网址 | 免费在线激情视频 | 国产伦理av | 亚洲天堂中文字幕 | 综合第一页 | 青草成人免费视频 | 免费人妻一区二区三区 | 熟妇无码乱子成人精品 | 亚州av成人 | 亚洲欧美日韩在线 | 久久久久久一 | 三大队在线观看 | 91.久久| 147人体做爰大胆图片成人 | 欧美碰碰碰| 99热99热| 99热在线国产 | 97福利网| 操你啦在线视频 | 亚洲а∨天堂久久精品2021 | 国产伦精品一区 | 高潮毛片7777777毛片 | 色一情一区二区三区四区 | 国产wwwwww | 欧美激情3p | 污污的视频网站在线观看 | 亚洲综合成人av | 国产一线二线在线观看 | av网站免费观看 | 正在播放一区二区 | 97色在线观看 | 国产在线观看一区二区三区 | jul023被夫上司连续侵犯 |