日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

小黑笔记:transe模型

發布時間:2023/12/2 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 小黑笔记:transe模型 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

1.數據集準備

import openke from openke.data import TrainDataLoader,TestDataLoadertrain_dataloader = TrainDataLoader(in_path = "./benchmarks/FB15K237_tiny/",nbatches = 100,threads = 8,# 負采樣sampling_mode = 'normal',# bern構建負樣本方式bern_flag = 1,# 負樣本同replace entitiesneg_ent = 25,neg_rel = 0 ) # dataloader for test test_dataloader = TestDataLoader("./benchmarks/FB15K237_tiny/", "link")

2.模型構建

import torch import torch.nn as nn import torch.nn.functional as F class TransE(nn.Module):def __init__(self,ent_tot,rel_tot,dim = 100,p_norm = 1,norm_flag = True,margin = None,epsilon = None):super(TransE,self).__init__()self.ent_tot = ent_totself.rel_tot = rel_tot# embedding維度self.dim = dimself.margin = margin# 初始化為Noneself.epsilon = epsilonself.norm_flag = norm_flag# scoring function計算距離使用L1 normself.p_norm = p_norm# embedding矩陣 [e,d]self.ent_embeddings = nn.Embedding(self.ent_tot,self.dim)# embedding矩陣,[r,d]self.rel_embeddings = nn.Embedding(self.rel_tot,self.dim)# 參數初始化if margin == None or epsilon == None:nn.init.xavier_uniform_(self.ent_embeddings.weight.data)nn.init.xavier_uniform_(self.rel_embeddings.weight.data)else:self.embedding_range = nn.Parameter(torch.Tensor([(self.margin + self.epsilon) / self.dim]),requires_grad = False)nn.init.uniform_(tensor = self.ent_embeddings.weight.data,a = -self.embedding_range.item(),b = self.embedding_range.item())nn.init.uniform_(tensor = self.rel_embeddings.weight.data,a = -self.embedding_range.item(),b = self.embedding_range.item())# 容忍系數marginif margin != None:self.margin = nn.Parameter(torch.Tensor([margin]))self.margin.requires_grad = Falseself.margin_flag = Trueelse:# 執行self.margin_flag = False# 計算得分函數def _calc(self,h,t,r,mode):if self.norm_flag:h = F.normalize(h,2,-1)r = F.normalize(r,2,-1)t = F.normalize(t,2,-1)if mode != 'normal':h = h.view(-1,r.shape[0],h.shape[-1])t = t.view(-1,r.shape[0],t.shape[-1])r = r.view(-1,r.shape[0],r.shape[-1])if mode == 'head_batch':score = h + (r - t)else:score = (h + r) - tscore = torch.norm(score,self.p_norm,-1).flatten()return scoredef forward(self,data):batch_h = data['batch_h']batch_t = data['batch_t']batch_r = data['batch_r']mode = data['mode']h = self.ent_embeddings(batch_h)t = self.ent_embeddings(batch_t)r = self.rel_embeddings(batch_r)# 計算scorescore = self._calc(h,t,r,mode)if self.margin_flag:return self.margin - scoreelse:return score# 正則化函數def regularization(self,data):batch_h = data['batch_h']batch_t = data['batch_t']batch_r = data['batch_r']h = self.ent_embeddings(batch_h)t = self.ent_embeddings(batch_t)r = self.ent_embeddings(batch_r)regul = (torch.mean(h ** 2) + torch.mean(t ** 2) + torch.mean(r ** 2)) / 3return reguldef predict(self,data):score = self.forward(data)if self.margin_flag:score = self.margin - scorereturn score.cpu().data.numpy()else:return score.cpu().data.numpy()def save_checkpoint(self, path):torch.save(self.state_dict(), path)''' model = TransE(train_dataloader.get_ent_tot(),train_dataloader.get_rel_tot()) example = list(train_dataloader)[0] for key in example:if type(example[key]) != str:example[key] = torch.LongTensor(example[key]) model(example) ''' pass

3.損失函數構建

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np class MarginLoss(nn.Module):def __init__(self,adv_temperature = None,margin = 6.0):super(MarginLoss,self).__init__()self.margin = nn.Parameter(torch.Tensor([margin]))self.margin.requires_grad = Falseif adv_temperature != None:self.adv_temperature = nn.Parameter(torch.Tensor([adv_temperature]))self.adv_temperatrue.requires_grad = Falseself.adv_flag = Trueelse:self.adv_flag = Falsedef get_weights(self,n_score):return F.softmax(-n_score * self.adv_temperature,dim = -1).detach()def forward(self,p_score,n_score):if self.adv_flag:return (self.get_weights(n_score) * torch.max(p_score - n_score,self.margin)).sum(dim = -1).mean() + self.marginelse:return (torch.max(p_score - n_score,-self.margin)).mean() + self.margindef predict(self,p_score,n_score):score = self.forward(p_score,n_score)return score.cpu().data.numpy() ''' model = TransE(train_dataloader.get_ent_tot(),train_dataloader.get_rel_tot()) example = list(train_dataloader)[0] for key in example:if type(example[key]) != str:example[key] = torch.LongTensor(example[key]) loss = MarginLoss() negativeSampling = NegativeSampling(model,loss,batch_size=train_dataloader.batch_size) negativeSampling(example) ''' pass

4.負采樣構建

class NegativeSampling(nn.Module):def __init__(self,model = None,loss = None,batch_size = 256,regul_rate = 0.0,l3_regul_rate = 0.0):super(NegativeSampling,self).__init__()self.model = modelself.loss = lossself.batch_size = batch_size# 正則化系數self.regul_rate = regul_rateself.l3_regul_rate = l3_regul_rate# batch中樣本排序,[正,正,正....(batch_size個),負,負....(batch_size*negative_num個)]# 第i個正樣本對應負樣本[i + batch_size,i + 2 * batch_size...i + (negative_num * batch_size)]# 從batch中獲取正樣本def _get_positive_score(self,score):positive_score = score[:self.batch_size]positive_score = positive_score.view(-1,self.batch_size).permute(1,0)return positive_scoredef _get_negative_score(self,score):negative_score = score[self.batch_size:]# 將[i1,j1,k1,i2,j2,k2,i3,j3,k3]# 整理成 [i1,j1,k1# i2,j2,k2# i3,j3,k3] 再轉轉置即可negative_score = negative_score.view(-1,self.batch_size).permute(1,0)return negative_scoredef forward(self,data):# 調用模型score = self.model(data)# 正樣本p_score = self._get_positive_score(score)# 負樣本n_score = self._get_negative_score(score)# 得到標量lossloss_res = self.loss(p_score,n_score)# loss加上正則項if self.regul_rate != 0:loss_res += self.regul_rate * self.model.regularization(data)if self.l3_regul_rate != 0:loss_res += self.l3_regul_rate * self.model.l3_regularization()return loss_resdef save_checkpoint(self, path):torch.save(self.state_dict(), path)

5.模型訓練

import torch import torch.nn as nn from torch.autograd import Variable import torch.optim as optim import os import time import sys import datetime import ctypes import json import numpy as np import copy from tqdm import tqdm class Traniner(object):def __init__(self,model = None,data_loader = None,train_times = 1000,alpha = 0.5,use_gpu = True,opt_method = 'sgd',save_steps = None,checkpoint_dir = None):self.work_threads = 8self.train_times = train_timesself.opt_method = opt_methodself.optimizer = None# 避免過擬合self.weight_decay = 0self.alpha = alphaself.model = model# class TrainDataLoader:訓練集self.data_loader = data_loaderself.use_gpu = use_gpuself.save_steps = save_stepsself.checkpoint_dir = checkpoint_dirdef to_var(self,x,use_gpu):if use_gpu:return Variable(torch.from_numpy(x).cuda())else:return Variable(torch.from_numpy(x))def train_one_step(self,data):self.optimizer.zero_grad()loss = self.model({'batch_h':self.to_var(data['batch_h'],self.use_gpu),'batch_t':self.to_var(data['batch_t'],self.use_gpu),'batch_r':self.to_var(data['batch_r'],self.use_gpu),'batch_y':self.to_var(data['batch_y'],self.use_gpu),'mode':data['mode']})loss.backward()self.optimizer.step()return loss.item()def run(self):if self.use_gpu:self.model.cuda()if self.optimizer != None:passelif self.opt_method == 'Adagrad' or self.opt_method == 'adagrad':self.optimizer = optim.Adagrad(self.model.parameters(),lr = self.alpha,lr_decay = self.lr_decay,weight_decay = self.weight_decay)elif self.opt_method == 'Adadelta' or self.opt_method == 'adadelta':self.optimizer = optim.Adadelta(self.model.parameters(),lr = self.alpha,weight_decay = self.weight_decay)elif self.opt_method == 'Adam' or self.opt_method == 'adam':self.optimizer = optim.Adam(self.model.parameters(),lr = self.alpha,weight_decay = self.weight_decay)else:self.optimizer = optim.SGD(self.model.parameters(),lr = self.alpha,weight_decay = self.weight_decay)print('Finish initializing...')# 循環1000個epochtraining_range = tqdm(range(self.train_times))for epoch in training_range:res = 0.0for data in self.data_loader:loss = self.train_one_step(data)res += losstraining_range.set_description('Epoch %d | loss: %f' % (epoch,res))if self.save_steps and self.checkpoint_dir and (epoch + 1) % self.save_steps == 0:print('Epoch %d has finished,saving...' % (epoch))self.model.save_checkpoint(os.path.join(self.checkpoint_dir + '-' + str(epoch) + '.ckpt'))transe = TransE(train_dataloader.get_ent_tot(),train_dataloader.get_rel_tot()) train_dataloader = TrainDataLoader(in_path = "./benchmarks/FB15K237_tiny/",nbatches = 100,threads = 8,# 負采樣sampling_mode = 'normal',# bern構建負樣本方式bern_flag = 1,# 負樣本同replace entitiesneg_ent = 25,neg_rel = 0 ) # dataloader for test test_dataloader = TestDataLoader("./benchmarks/FB15K237_tiny/", "link") loss = MarginLoss() model = NegativeSampling(transe,loss,batch_size=train_dataloader.batch_size) trainer = Traniner(model = model,data_loader = train_dataloader) trainer.run()

總結

以上是生活随笔為你收集整理的小黑笔记:transe模型的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。