日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

KNNClassifier

發布時間:2023/12/1 编程问答 40 豆豆
生活随笔 收集整理的這篇文章主要介紹了 KNNClassifier 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
import numpy as np
from math import sqrt
from collections import Counter
from .metrics import accuracy_score

class KNNClassifier:

def __init__(self, k):
"""初始化kNN分類器"""
assert k >= 1, "k must be valid"
self.k = k
self._X_train = None
self._y_train = None

def fit(self, X_train, y_train):
"""根據訓練數據集X_train和y_train訓練kNN分類器"""
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must be equal to the size of y_train"
assert self.k <= X_train.shape[0], \
"the size of X_train must be at least k."

self._X_train = X_train
self._y_train = y_train
return self

def predict(self, X_predict):
"""給定待預測數據集X_predict,返回表示X_predict的結果向量"""
assert self._X_train is not None and self._y_train is not None, \
"must fit before predict!"
assert X_predict.shape[1] == self._X_train.shape[1], \
"the feature number of X_predict must be equal to X_train"

y_predict = [self._predict(x) for x in X_predict]
return np.array(y_predict)

def _predict(self, x):
"""給定單個待預測數據x,返回x的預測結果值"""
assert x.shape[0] == self._X_train.shape[1], \
"the feature number of x must be equal to X_train"

distances = [sqrt(np.sum((x_train - x) ** 2))
for x_train in self._X_train]
nearest = np.argsort(distances)

topK_y = [self._y_train[i] for i in nearest[:self.k]]
votes = Counter(topK_y)

return votes.most_common(1)[0][0]

def score(self, X_test, y_test):
"""根據測試數據集 X_test 和 y_test 確定當前模型的準確度"""

y_predict = self.predict(X_test)
return accuracy_score(y_test, y_predict)

def __repr__(self):
return "KNN(k=%d)" % self.k


轉載于:https://www.cnblogs.com/heguoxiu/p/10135546.html

總結

以上是生活随笔為你收集整理的KNNClassifier的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。