Brackets (区间DP)
個人心得:今天就做了這些區間DP,這一題開始想用最長子序列那些套路的,后面發現不滿足無后效性的問題,即(,)的配對
對結果有一定的影響,后面想著就用上一題的思想就慢慢的從小一步一步遞增,后面想著越來越大時很多重復,應該要進行分割,
后面想想又不對,就去看題解了,沒想到就是分割,還是動手能力太差,還有思維不夠。
1 for(int j=0;j+i<ch.size();j++) 2 { 3 if(check(j,j+i)) 4 dp[j][j+i]=dp[j+1][j+i-1]+2; 5 for(int m=j;m<=j+i;m++) 6 dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+1][j+i]); 7 }分割并一次求最大值。動態規劃真的是一臉懵逼樣,多思考,多瞎想吧,呼~
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if?s?is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if?a?and?b?are regular brackets sequences, then?ab?is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters?a1a2?…?an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of?s. That is, you wish to find the largest?m?such that for indices?i1,?i2, …,?im?where 1 ≤?i1?<?i2?< … <?im?≤?n,?ai1ai2?…?aim?is a regular brackets sequence.
Given the initial sequence?([([]])], the longest regular brackets subsequence is?[([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters?(,?),?[, and?]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) endSample Output
6 6 4 0 6 1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 #include<cstring> 5 #include<iomanip> 6 #include<string> 7 #include<algorithm> 8 using namespace std; 9 int money[205]; 10 int dp[205][205]; 11 string ch; 12 const int inf=999999; 13 int check(int i,int j){ 14 if((ch[i]=='('&&ch[j]==')')||(ch[i]=='['&&ch[j]==']')) 15 return 1; 16 return 0; 17 } 18 void init(){ 19 for(int i=0;i<ch.size();i++) 20 for(int j=0;j<ch.size();j++) 21 dp[i][j]=0; 22 } 23 int main(){ 24 int n,m; 25 while(getline(cin,ch,'\n')){ 26 if(ch=="end") break; 27 init(); 28 for(int k=0;k<ch.size()-1;k++) 29 if(check(k,k+1)) 30 dp[k][k+1]=2; 31 else 32 dp[k][k+1]=0; 33 for(int i=2;i<ch.size();i++) 34 { 35 for(int j=0;j+i<ch.size();j++) 36 { 37 if(check(j,j+i)) 38 dp[j][j+i]=dp[j+1][j+i-1]+2; 39 for(int m=j;m<=j+i;m++) 40 dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+1][j+i]); 41 } 42 43 } 44 cout<<dp[0][ch.size()-1]<<endl; 45 } 46 return 0; 47 }?
轉載于:https://www.cnblogs.com/blvt/p/7371994.html
總結
以上是生活随笔為你收集整理的Brackets (区间DP)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: while和for循环
- 下一篇: 圆周率的代码表示,以及对其的理解。