二十、分水岭算法
一、基本原理
分水嶺算法主要是基于距離變換(distance transform),找到mark一些種子點,從這些種子點出發根據像素梯度變化進行尋找邊緣并標記
分水嶺:可以簡單的理解成一座山,然后來洪水了,水開始上漲淹沒山,慢慢的水位上升,一些海拔低的地方就被淹沒。
二、基于距離的分水嶺分割思路
開始—輸入圖像—轉換為灰度圖—消除噪聲—轉換為二值圖像—距離變化—尋找種子—生產marker—分水嶺變換—輸出圖像—結束
三、代碼實現
import cv2 as cv import numpy as npdef watershed():# remove noise if anyprint(src.shape)blurred = cv.pyrMeanShiftFiltering(src, 10, 100)#邊緣保留濾波,消除噪聲# gray\binary imagegray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)#轉變為灰度圖像ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)#二值化cv.imshow("binary-image", binary)#顯示二值圖像# morphology operationkernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))#矩形框mb = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel, iterations=2)#連續兩次開操作sure_bg = cv.dilate(mb, kernel, iterations=3)cv.imshow("mor-opt", sure_bg)# distance transformdist = cv.distanceTransform(mb, cv.DIST_L2, 3)dist_output = cv.normalize(dist, 0, 1.0, cv.NORM_MINMAX)cv.imshow("distance-t", dist_output*50)ret, surface = cv.threshold(dist, dist.max()*0.6, 255, cv.THRESH_BINARY)print(ret)surface_fg = np.uint8(surface)cv.imshow("surface-bin", surface_fg)unknown = cv.subtract(sure_bg, surface_fg)ret, markers = cv.connectedComponents(surface_fg)#求取連通區域print(ret)# watershed transformmarkers = markers + 1markers[unknown==255] = 0markers = cv.watershed(src, markers=markers)src[markers==-1] = [0, 0, 255]cv.imshow("result", src)src = cv.imread(r"G:\Juptyer_workspace\study\opencv\opencv3/coins.jpg") cv.namedWindow("input image", cv.WINDOW_AUTOSIZE) cv.imshow("input image", src) watershed() cv.waitKey(0)cv.destroyAllWindows()效果圖如下:
總結
- 上一篇: 峰米投影仪看电影的效果怎么样?画质和音质
- 下一篇: TensorFlow在Anaconda环