日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

      歡迎訪問 生活随笔!

      生活随笔

      當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

      编程问答

      【Lintcode】018.Subsets II

      發布時間:2023/11/30 编程问答 44 豆豆
      生活随笔 收集整理的這篇文章主要介紹了 【Lintcode】018.Subsets II 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

      題目:

      Given a list of numbers that may has duplicate numbers, return all possible subsets

      Notice

      • Each element in a subset must be in?non-descending?order.
      • The ordering between two subsets is free.
      • The solution set must not contain duplicate subsets.

      Example

      If S =?[1,2,2], a solution is:

      [[2],[1],[1,2,2],[2,2],[1,2],[] ]

      題解:

      Solution 1 ()

      class Solution { public:vector<vector<int> > subsetsWithDup(vector<int> S) {vector<vector<int> > res;vector<int> v;sort(S.begin(), S.end());Dfs(S, res, v, 0);return res;}void Dfs(vector<int> S, vector<vector<int> > &res, vector<int> &v, int pos) {res.push_back(v);for (int i = pos; i < S.size(); ++i) {if (i == pos || S[i] != S[i - 1]) {v.push_back(S[i]);Dfs(S, res, v, i + 1);v.pop_back();}}} };

        To solve this problem, it is helpful to first think how many subsets are there. If there is no duplicate element, the answer is simply 2^n, where n is the number of elements. This is because you have two choices for each element, either putting it into the subset or not. So all subsets for this no-duplicate set can be easily constructed:

      num of subset

      • (1 to 2^0) empty set is the first subset
      • (2^0+1 to 2^1) add the first element into subset from (1)
      • (2^1+1 to 2^2) add the second element into subset (1 to 2^1)
      • (2^2+1 to 2^3) add the third element into subset (1 to 2^2)
      • ....
      • (2^(n-1)+1 to 2^n) add the nth element into subset(1 to 2^(n-1))

      Then how many subsets are there if there are duplicate elements? We can treat duplicate element as a spacial element. For example, if we have duplicate elements (5, 5), instead of treating them as two elements that are duplicate, we can treat it as one special element 5, but this element has more than two choices: you can either NOT put it into the subset, or put ONE 5 into the subset, or put TWO 5s into the subset. Therefore, we are given an array (a1, a2, a3, ..., an) with each of them appearing (k1, k2, k3, ..., kn) times, the number of subset is (k1+1)(k2+1)...(kn+1). We can easily see how to write down all the subsets similar to the approach above.

      Solution 2 ()

      class Solution { public:vector<vector<int> > subsetsWithDup(vector<int> &S) {vector<vector<int> > res{{}};sort(S.begin(), S.end());for (int i = 0; i < S.size(); ) {int cnt = 0;while (cnt + i < S.size() && S[cnt + i] == S[i]) {++cnt;}int size = res.size();for (int j = 0; j < size; ++j) {vector<int> instance = res[j];for (int k = 0; k < cnt; ++k) {instance.push_back(S[i]);res.push_back(instance);}}i += cnt;}return res;} };

      Solution 3 ()

      class Solution { public:vector<vector<int> > subsetsWithDup(vector<int> &S) {vector<vector<int> > res{{}};sort(S.begin(), S.end());int size = 1;int last = !S.empty() ? S[0] : 0;for (int i = 0; i < S.size(); ++i) {if (last != S[i]) {last = S[i];size = res.size();}int newsize = res.size();for (int j = newsize - size; j < newsize; ++j) {res.push_back(res[j]);res.back().push_back(S[i]);}}return res;} };

      ?

      轉載于:https://www.cnblogs.com/Atanisi/p/6866474.html

      總結

      以上是生活随笔為你收集整理的【Lintcode】018.Subsets II的全部內容,希望文章能夠幫你解決所遇到的問題。

      如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。