日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 >

风能matlab仿真_发现潜力:使用计算机视觉对可再生风能发电场的主要区域进行分类(第1部分)

發(fā)布時(shí)間:2023/11/29 87 豆豆
生活随笔 收集整理的這篇文章主要介紹了 风能matlab仿真_发现潜力:使用计算机视觉对可再生风能发电场的主要区域进行分类(第1部分) 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

風(fēng)能matlab仿真

Github Repo: https://github.com/codeamt/WindFarmSpotter

Github回購: https : //github.com/codeamt/WindFarmSpotter

This is a series:

這是一個(gè)系列:

  • Part 1: A Brief Introduction on Leveraging Edge Devices and Embedded AI to Track the U.S.Wind Energy Footprint (You are Here)

    第1部分:有關(guān)利用邊緣設(shè)備和嵌入式AI跟蹤USWind能源足跡的簡(jiǎn)要介紹(您在這里)

  • Part 2: An Approach to Satelite Arial Image Data Generation and Automation with Google Earth Engine, Basemap, and Colab

    第2部分: 使用Google Earth Engine,底圖和Colab進(jìn)行衛(wèi)星Arial圖像數(shù)據(jù)生成和自動(dòng)化的方法

  • Part 3: Experimenting with Memory, Efficiency, and Scaling Input Resolution using a Fast.ai v3 Training Pipeline

    第3部分: 使用Fast.ai v3培訓(xùn)管道試驗(yàn)內(nèi)存,效率和擴(kuò)展輸入分辨率

  • Part 4: Running Inference Tests: Swift-Python Interoperability, and Hardware Acceleration

    第4部分:運(yùn)行推理測(cè)試:Swift-Python互操作性和硬件加速

  • Part 5: Spinning Up Inference APIs — Flask (Just Python) v. Kitura (Python & Swift)

    第5部分 :旋轉(zhuǎn)推理API — Flask(僅Python)訴Kitura(Python和Swift)

  • Part 6: Containerizing Deployments for Web, ARMv8/Jetson NVIDIA Series, and SWAP Hardware Platforms

    第6部分: Web,ARMv8 / Jetson NVIDIA系列和SWAP硬件平臺(tái)的容器化部署

Recently, I completed a data science and software engineering project as part of a hiring pipeline.

最近,我在招聘流程中完成了一個(gè)數(shù)據(jù)科學(xué)和軟件工程項(xiàng)目。

The company (and I’ll keep the entity anonymous for now) takes a novel approach to the technical interview — lending applicants an NVIDIA Jetson TX2 GPU with free range to execute on a deep learning area of interest.

該公司(我現(xiàn)在將實(shí)體保持匿名)將采用一種新穎的方式進(jìn)行技術(shù)面試-向申請(qǐng)人提供具有自由范圍的NVIDIA Jetson TX2 GPU,以便在感興趣的深度學(xué)習(xí)領(lǐng)域內(nèi)執(zhí)行。

關(guān)注的領(lǐng)域:風(fēng)電場(chǎng)—確定潛在的擴(kuò)展區(qū)域,這意味著通過公噸減少碳排放(CO2) (Area of Interest: Wind Farms — Identifying Potential Areas of Expansion Means Reducing Carbon Emission (CO2) by the Metric Ton)

Given the election season and lots of mention of shifting to renewable energy sources being key to lowering our Carbon Footprint, I took this opportunity to learn more about various forms of energy and realized Wind Energy has lots to offer!

鑒于選舉季節(jié)和降低可再生能源足跡的關(guān)鍵,很多人都提到轉(zhuǎn)向可再生能源,因此我借此機(jī)會(huì)了解了更多有關(guān)各種形式能源的信息,并意識(shí)到風(fēng)能提供了很多!

During my research, I found this fact sheet published by the University of Michigan that laid out the value propositions of Wind Energy. The publication highlighted that:

在研究過程中,我發(fā)現(xiàn)了密歇根大學(xué)發(fā)布的這份情況說明書 ,列出了風(fēng)能的價(jià)值主張。 該出版物強(qiáng)調(diào):

  • Increasing Wind Capacity by 1 GigaWatt (GW) avoids the need for Carbon (CO2) Emission by a couple of million metric tons and reduces the need for Water (for Power plants) by roughly a million gallons.

    將風(fēng)力發(fā)電能力提高1吉瓦(GW),可避免將碳(CO2)排放減少幾百萬公噸,并減少大約一百萬加侖的水(用于發(fā)電廠)。
  • Previous research from 2015 found that if Wind Turbines — the central technology of Wind Farms — generated 35% of our electricity, this would eliminate 510 billion kg of CO2 emissions annually.

    2015年的先前研究發(fā)現(xiàn),如果風(fēng)力渦輪機(jī) ( 風(fēng)力發(fā)電場(chǎng)的核心技術(shù))產(chǎn)生了我們35%的電力,那么每年將減少5100億公斤的二氧化碳排放。

  • Wind Farms do not disturb the peace. Given a 350meter radius, Wind Farms emit roughly the same amount of noise (35–45 decibels) as a quiet bedroom (35 decibels) and less noise than a car driving 40mph (55 decibels).

    風(fēng)電場(chǎng)不會(huì)干擾和平。 在半徑為350米的情況下,風(fēng)電場(chǎng)發(fā)出的噪音與安靜的臥室(35分貝)大致相同(35-45分貝),并且比以40英里/小時(shí)的速度行駛(55分貝)的汽車要少 。

  • Wind Energy is very cost-effective. In terms of residential energy prices, in 2016, typical energy quotes were based on the rate of 12.9¢/kWh, where wind energy would only be 2¢/kWh. (That’s right, wind energy would make your electricity bill 6x cheaper!)

    風(fēng)能非常劃算。 在居民能源價(jià)格方面,2016年,典型能源報(bào)價(jià)基于12.9美分/千瓦時(shí)的價(jià)格,而風(fēng)能僅為2美分/千瓦時(shí)。 (是的,風(fēng)能會(huì)使您的電費(fèi)便宜6倍!)
  • For Wind Farmers, working on large capacity projects (defined in the fact sheet as >= 83 acres), the ROI ratio is $4 to $1.

    對(duì)于從事大型項(xiàng)目(在情況說明書中定義為> = 83英畝)的風(fēng)力發(fā)電場(chǎng),ROI比率為4:1。

Learning about this market has been a whirlwind, to say the least.

至少可以說,了解這個(gè)市場(chǎng)是一個(gè)旋風(fēng)。

All this new knowledge made me wonder if data science/deep learning and specifically, computer vision, could help in “spotting potential” regions of interest for new Wind Farm projects and this initial inquiry led to the core idea of my project Wind Farm Spotter: an inference engine for classifying the capacity of existing land-based Wind Farms and potential capacity of unoccupied locations from satellite images.

所有這些新知識(shí)使我想知道,數(shù)據(jù)科學(xué)/深度學(xué)習(xí),特別是計(jì)算機(jī)視覺是否可以幫助“發(fā)現(xiàn)”新風(fēng)電場(chǎng)項(xiàng)目的潛在感興趣區(qū)域,而最初的詢問導(dǎo)致了我的項(xiàng)目“風(fēng)電場(chǎng)觀測(cè)者”的核心思想:推理引擎,用于根據(jù)衛(wèi)星圖像對(duì)現(xiàn)有陸上風(fēng)電場(chǎng)的容量和未占用位置的潛在容量進(jìn)行分類。

項(xiàng)目范圍:開發(fā)用于風(fēng)電場(chǎng)觀測(cè)器的機(jī)器學(xué)習(xí)管道的端到端演練 (Project Scope: An End-to-End Walkthrough of Developing a Machine Learning Pipeline for Wind Farm Spotter)

In subsequent posts, I’ll share my thoughts and findings on developing an end-to-end Machine Learning Pipeline and creating inference engine deployments for web and fog/edge SWAP Hardware Architecture.

在隨后的文章中,我將分享我對(duì)開發(fā)端到端機(jī)器學(xué)習(xí)管道以及為Web和fog / edge SWAP硬件架構(gòu)創(chuàng)建推理引擎部署的想法和發(fā)現(xiàn)。

Tools and Environment:

工具和環(huán)境:

Software used to develop this project include:

用于開發(fā)此項(xiàng)目的軟件包括:

  • Google Earth Engine

    Google Earth Engine
  • Basemap

    底圖
  • ArcGIS API Service

    ArcGIS API服務(wù)
  • PyTorch 1.1 / Torchvision

    PyTorch 1.1 / Torchvision
  • pytorchcv

    pytorchcv
  • Fast.ai v3

    Fast.ai v3
  • Python 3.6, Flask

    Python 3.6,燒瓶
  • Swift 5.0.1, Kitura

    雨燕5.0.1,基圖拉
  • Jetpack 4.3

    噴氣背包4.3
  • XQuartz (X11)

    XQuartz(X11)
  • Virtualenv

    虛擬環(huán)境
  • Docker Community Edition, Edge

    Docker社區(qū)版,Edge

Environment:

環(huán)境:

  • Google Drive

    Google云端硬碟
  • Google Colab

    Google Colab
  • MacBook Pro

    MacBook Pro
  • Jetson TX2

    杰特遜TX2
  • Ubuntu 18.04.3

    Ubuntu 18.04.3

Stay tuned for future posts! The code repository for this series can be found here.

請(qǐng)繼續(xù)關(guān)注以后的帖子! 該系列的代碼存儲(chǔ)庫可以在這里找到。

Keep Reading:

繼續(xù)閱讀:

Next Post: Part 2: An Approach to Satelite Arial Image Data Generation and Automation with Google Earth Engine, Basemap, and Colab

下一篇文章:第2部分: 使用Google Earth Engine,底圖和Colab進(jìn)行衛(wèi)星Arial圖像數(shù)據(jù)生成和自動(dòng)化的方法

翻譯自: https://medium.com/experimenting-with-deep-learning/spotting-potential-classifying-prime-areas-for-renewable-wind-energy-farms-with-computer-vision-3085018c821c

風(fēng)能matlab仿真

總結(jié)

以上是生活随笔為你收集整理的风能matlab仿真_发现潜力:使用计算机视觉对可再生风能发电场的主要区域进行分类(第1部分)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。