日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 人文社科 > 生活经验 >内容正文

生活经验

TVM 各个模块总体架构

發(fā)布時(shí)間:2023/11/28 生活经验 50 豆豆
生活随笔 收集整理的這篇文章主要介紹了 TVM 各个模块总体架构 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

TVM 各個(gè)模塊總體架構(gòu)


Deploy Deep Learning Everywhere

Existing Deep Learning Frameworks

Limitations of Existing Approach

Learning-based Learning System

Problem Setting

Example Instance in a Search Space


Optimization Choices in a Search Space

Problem Formalization

Black-box Optimization

Cost-model Driven Approach

Statistical Cost Model

Unique Problem Characteristics

Vanilla Cost Modeling

Program-aware Modeling: Tree-based Approach

Program-aware Modeling: Neural Approach

Comparisons of Models

Unique Problem Characteristics

Transferable Cost Model

Impact of Transfer Learning

Learning to Optimize Tensor Programs

Device Fleet: Distributed Test Bed for AutoTVM

TVM: End to End Deep Learning Compiler


Tensor Expression and Optimization Search Space

Search Space for CPUs

Hardware-aware Search Space

Search Space for GPUs

Search Space for TPU-like Specialized Accelerators

Tensorization Challenge

Tensorization Challenge

Search Space for TPU-like Specialized Accelerators

Software Support for Latency Hiding

Summary: Hardware-aware Search Space

VTA: Open & Flexible Deep Learning Accelerator

TVM: End to End Deep Learning Compiler

Need for More Dynamism

Relay Virtual Machine

uTVM: TVM on bare-metal Devices

Core Infrastructure

TSIM: Support for Future Hardware

Unified Runtime For Heterogeneous Devices

Unified Runtime Benefit

Effectiveness of ML based Model

Comparisons of Models

Device Fleet in Action

End to End Inference Performance (Nvidia Titan X)

Portable Performance Across Hardware Platforms

總結(jié)

以上是生活随笔為你收集整理的TVM 各个模块总体架构的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。