日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 默认站点!

默认站点

當前位置: 首頁 >

黎曼曲面Riemann Surface

發布時間:2023/11/28 34 豆豆
默认站点 收集整理的這篇文章主要介紹了 黎曼曲面Riemann Surface 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

黎曼曲面Riemann Surface

A Riemann surface is a surface-like configuration that covers the complex plane with several, and in general infinitely many, “sheets.” These sheets can have very complicated structures and interconnections (Knopp 1996,
pp. 98-99). Riemann surfaces are one way of representing multiple-valued
functions; another is branch cuts. The above plot shows Riemann surfaces for solutions of the equation

黎曼曲面是一種類似于曲面的結構,它覆蓋了多個,通常是無限多個的“片”。這些片可以有非常復雜的結構和相互連接(Knopp 1996,pp.98-99)。Riemann曲面是表示多值函數(功能)的一種方法;另一種是分支切割。上圖顯示了方程解的黎曼曲面。

其中d=2, 3, 4, and 5, where w(z) is the Lambert W-function (M. Trott).

The Riemann surface S of the function field K is the set of nontrivial
discrete valuations on K. Here, the set S corresponds to the ideals of the ring A of K integers of K over C(z) . ( A consists of the elements
of K that are roots of monic polynomials over C(z) .) Riemann surfaces provide a geometric visualization of functions elements and their analytic
continuations.

函數(功能)域K的Riemann曲面S是K上的一組非平凡離散賦值集,這里的S對應于C(z)上K的整數環A的理想。(A由K的元素組成,這些元素是C[z]上的一元多項式的根)。Riemann曲面提供了函數(功能)元素及其解析連續性的幾何可視化。

Schwarz proved at the end of nineteenth century that the automorphism
group of a compact Riemann surface of genus g>=2 is finite, and Hurwitz (1893) subsequently showed that its order is at most 84(g-1) (Arbarello et
al. 1985, pp. 45-47; Karcher and Weber 1999, p. 9). This bound is attained for infinitely many g, with the smallest of g such an extremal surface being 3 (corresponding to the Klein quartic). However, it is also known that there are infinitely many genera for which the bound 84(g-1) is not attained (Belolipetsky 1997, Belolipetsky and Jones).

Schwarz在十九世紀末證明了虧格g>=2的緊致黎曼曲面的自同構群是有限的,Hurwitz(1893)隨后證明了它的階至多為84(g-1)(Arbarello等人。1985年,第45-47頁;卡徹和韋伯1999年,第9頁)。對于無窮多的g,這個界是得到的,并且這樣一個極值曲面的最小g是3(對應于Klein四次曲線)。然而,我們也知道,有無限多的屬沒有達到84(g-1)的界限(belloipetsky 1997,belloipetsky和Jones)。

總結

以上是默认站点為你收集整理的黎曼曲面Riemann Surface的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得默认站点網站內容還不錯,歡迎將默认站点推薦給好友。