java web 调用hadoop_Java及Web程序调用hadoop2.6
1. hadoop集群:
1.1 系統及硬件配置:
hadoop版本:2.6 ;三臺虛擬機:node101(192.168.0.101)、node102(192.168.0.102)、node103(192.168.0.103); 每臺機器2G內存、1個CPU核;
node101:?NodeManager、?NameNode、ResourceManager、DataNode;
node102: NodeManager、DataNode 、SecondaryNameNode、JobHistoryServer;
node103: NodeManager 、DataNode;
1.2 配置過程中遇到的問題:
1) NodeManager啟動不了;
最開始配置的虛擬機配置的是512M內存,所以在yarn-site.xml 中的“yarn.nodemanager.resource.memory-mb”配置為512(其默認配置是1024),查看日志,報錯:
org.apache.hadoop.yarn.exceptions.YarnRuntimeException: Recieved SHUTDOWN signal from Resourcemanager ,Registration of NodeManager failed, Message from ResourceManager: NodeManager from node101 doesn't satisfy minimum allocations, Sending SHUTDOWN signal to the NodeManager.? ? ? ? ?把它改為1024或者以上就可以正常啟動NodeManager了,我設置的是2048;
2) 任務可以提交,但是不會繼續運行
a. 由于這里每個虛擬機只配置了一個核,但是yarn-site.xml里面的“yarn.nodemanager.resource.cpu-vcores”默認配置是8,這樣在分配資源的時候會有問題,所以把這個參數配置為1;
b. 出現下面的錯誤:
is running beyond virtual memory limits. Current usage: 96.6 MB of 1.5 GB physical memory used; 1.6 GB of 1.5 GB virtual memory used. Killing container.這個應該是map、reduce、NodeManager的資源配置沒有配置好,大小配置不正確導致的,但是我改了好久,感覺應該是沒問題的,但是一直報這個錯,最后沒辦法,把這個檢查去掉了,即把yarn-site.xml 中的“yarn.nodemanager.vmem-check-enabled”配置為false;這樣就可以提交任務了。
1.3 配置文件(希望有高人可以指點下資源配置情況,可以不出現上面b的錯誤,而不是使用去掉檢查的方法):
1)hadoop-env.sh 和yarn-env.sh 中配置jdk,同時HADOOP_HEAPSIZE和YARN_HEAPSIZE配置為512;
2)hdfs-site.xml 配置數據存儲路徑和secondaryname所在節點:
dfs.namenode.name.dir
file:data/hadoop/hdfs/name
Determines where on the local filesystem the DFS name node
should store the name table(fsimage). If this is a comma-delimited list
of directories then the name table is replicated in all of the
directories, for redundancy.
dfs.datanode.data.dir
file:///data/hadoop/hdfs/data
Determines where on the local filesystem an DFS data node
should store its blocks. If this is a comma-delimited
list of directories, then data will be stored in all named
directories, typically on different devices.
Directories that do not exist are ignored.
dfs.namenode.secondary.http-address
node102:50090
3)core-site.xml 配置namenode:
fs.defaultFS
hdfs://node101:8020
4) mapred-site.xml 配置map和reduce的資源:
mapreduce.framework.name
yarn
The runtime framework for executing MapReduce jobs.
Can be one of local, classic or yarn.
mapreduce.jobhistory.address
node102:10020
MapReduce JobHistory Server IPC host:port
mapreduce.map.memory.mb
1024
mapreduce.reduce.memory.mb
1024
mapreduce.map.java.opts
-Xmx512m
mapreduce.reduce.java.opts
-Xmx512m
5)yarn-site.xml 配置resourcemanager及相關資源:
The hostname of the RM.
yarn.resourcemanager.hostname
node101
The address of the applications manager interface in the RM.
yarn.resourcemanager.address
${yarn.resourcemanager.hostname}:8032
The address of the scheduler interface.
yarn.resourcemanager.scheduler.address
${yarn.resourcemanager.hostname}:8030
The http address of the RM web application.
yarn.resourcemanager.webapp.address
${yarn.resourcemanager.hostname}:8088
The https adddress of the RM web application.
yarn.resourcemanager.webapp.https.address
${yarn.resourcemanager.hostname}:8090
yarn.resourcemanager.resource-tracker.address
${yarn.resourcemanager.hostname}:8031
The address of the RM admin interface.
yarn.resourcemanager.admin.address
${yarn.resourcemanager.hostname}:8033
List of directories to store localized files in. An
application's localized file directory will be found in:
${yarn.nodemanager.local-dirs}/usercache/${user}/appcache/application_${appid}.
Individual containers' work directories, called container_${contid}, will
be subdirectories of this.
yarn.nodemanager.local-dirs
/data/hadoop/yarn/local
Whether to enable log aggregation
yarn.log-aggregation-enable
true
Where to aggregate logs to.
yarn.nodemanager.remote-app-log-dir
/data/tmp/logs
Amount of physical memory, in MB, that can be allocated
for containers.
yarn.nodemanager.resource.memory-mb
2048
yarn.scheduler.minimum-allocation-mb
512
yarn.nodemanager.vmem-pmem-ratio
1.0
yarn.nodemanager.vmem-check-enabled
false
yarn.nodemanager.resource.cpu-vcores
1
the valid service name should only contain a-zA-Z0-9_ and can not start with numbers
yarn.nodemanager.aux-services
mapreduce_shuffle
yarn.nodemanager.aux-services.mapreduce.shuffle.class
org.apache.hadoop.mapred.ShuffleHandler
2. Java調用Hadoop2.6 ,運行MR程序:
需修改下面兩個地方:
1) 調用主程序的Configuration需要配置:
Configuration conf = new Configuration();
conf.setBoolean("mapreduce.app-submission.cross-platform", true);// 配置使用跨平臺提交任務
conf.set("fs.defaultFS", "hdfs://node101:8020");//指定namenode
conf.set("mapreduce.framework.name", "yarn"); // 指定使用yarn框架
conf.set("yarn.resourcemanager.address", "node101:8032"); // 指定resourcemanager
conf.set("yarn.resourcemanager.scheduler.address", "node101:8030");// 指定資源分配器2) 添加下面的類到classpath:
==
==
其他地方不用修改,這樣就可以運行;
3. Web程序調用Hadoop2.6,運行MR程序;
這個web程序調用部分和上面的java是一樣的,基本都沒有修改,所使用到的jar包也全部放在了lib下面。
最后有一點,我運行了三個map,但是三個map不是均勻分布的:
可以看到node103分配了兩個map,node101分配了1一個map;還有一次是node101分配了兩個map,node103分配了一個map;兩次node102都沒有分配到map任務,這個應該是資源管理和任務分配的地方還是有點問題的緣故。
分享,成長,快樂
轉載請注明blog地址:外鏈網址已屏蔽
總結
以上是生活随笔為你收集整理的java web 调用hadoop_Java及Web程序调用hadoop2.6的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 电影双子神偷续集是啥
- 下一篇: java异常例子_java 异常的实例详