ggplot2中显示坐标轴_R可视化11|ggplot2-图层图形语法 (3)
生活随笔
收集整理的這篇文章主要介紹了
ggplot2中显示坐标轴_R可视化11|ggplot2-图层图形语法 (3)
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
本文系統(tǒng)介紹ggplot2的統(tǒng)計變換(stat)、位置設(shè)置(Position adjustments)和標(biāo)度(scale)。
本文目錄
6、統(tǒng)計變換(stat)stats can be created with a geom_ functionstats can’t be created with a geom_ function7、 位置設(shè)置(Position adjustments)條形圖中stack|fill|dodge散點(diǎn)圖中nudge|jitter|jitterdodge8、標(biāo)度(scale)marker的形狀和大小圖例和坐標(biāo)軸6、統(tǒng)計變換(stat)
將data經(jīng)過一種統(tǒng)計方法整理,然后再繪圖,ggplot2的統(tǒng)計方法如下,都是以stat_開頭的函數(shù)。
可以分為兩類:
stats can be created with a geom_ function
stat_bin():geom_bar(),geom_freqpoly(),geom_histogram()stat_bin2d():geom_bin2d()stat_bindot():geom_dotplot()stat_binhex():geom_hex()stat_boxplot():geom_boxplot()stat_contour():geom_contour()stat_quantile():geom_quantile()stat_smooth():geom_smooth()stat_sum():geom_count()
options(repr.plot.width = 4.5, repr.plot.height = 3, repr.plot.res = 300)
f <- ggplot(mpg, aes(class, hwy))
f + geom_boxplot() stats can’t be created with a geom_ function
stat_ecdf(): compute a empirical cumulative distribution plot.stat_function(): compute y values from a function of x values.stat_summary(): summarise y values at distinct x values.stat_summary2d(),stat_summary_hex(): summarise binned values.stat_qq(): perform calculations for a quantile-quantile plot.stat_spoke(): convert angle and radius to position.stat_unique(): remove duplicated rows.
ggplot(mpg, aes(trans, cty)) + geom_point() + stat_summary(geom = "point", fun = "mean", colour = "red", size = 4)7、 位置設(shè)置(Position adjustments)
- 條形圖中stack|fill|dodge
position_stack(): stack overlapping bars (or areas) on top of each other.position_fill(): stack overlapping bars, scaling so the top is always at 1.position_dodge(): place overlapping bars (or boxplots) side-by-side.
options(repr.plot.width = 4.5, repr.plot.height = 5, repr.plot.res = 300)
dplot <- ggplot(diamonds, aes(color, fill = cut)) + xlab(NULL) + ylab(NULL) + theme(legend.position = "none")p1 <- dplot + geom_bar()#默認(rèn)堆疊
p2 <- dplot + geom_bar(position = "fill")#堆疊且按比例
p3 <- dplot + geom_bar(position = "dodge")#并列p4 <- grid.arrange(p1,p2,p3,nrow = 3)
ggsave("scale23.png", p4, width = 4.5, height = 5) - 散點(diǎn)圖中nudge|jitter|jitterdodge
position_nudge(): move points by a fixed offset.position_jitter(): add a little random noise to every position.position_jitterdodge(): dodge points within groups, then add a little random noise.
p1 <- ggplot(mpg, aes(displ, hwy)) + geom_point(position = "jitter")
p2 <- ggplot(mpg, aes(displ, hwy)) + geom_point(position = position_jitter(width = 0.05, height = 0.5))
p3 <- ggplot(mpg, aes(displ, hwy)) + geom_jitter(width = 0.05, height = 0.5)p4 <- grid.arrange(p1,p2,p3,nrow = 3)
ggsave("scale24.png", p4, width = 4.5, height = 5) 8、標(biāo)度(scale)
這部分內(nèi)容,這里介紹一些沒提到的,前面寫已過三篇文章詳細(xì)介紹:
R可視化06|ggplot2圖層-標(biāo)度圖層(scale layer)-坐標(biāo)軸篇
R可視化07|ggplot2圖層-標(biāo)度圖層(scale layer)-顏色盤篇
R可視化08|ggplot2圖層-標(biāo)度圖層(scale layer)-圖例篇
- marker的形狀和大小
使用第一行的數(shù)字即可使用第二行的形狀。
options(repr.plot.width = 6.5, repr.plot.height = 5, repr.plot.res = 300)#marker形狀
p <- e + geom_point(aes(shape = fl, size = cyl))p1 <- p + scale_shape() + scale_size()
p2 <- p + scale_shape_manual(values = c(1:26))#values = c(1:26)指定marker#marker大小
p3 <- p + scale_radius(range = c(1,6))
p4 <- p + scale_size_area(max_size = 6)
p5 <- grid.arrange(p2,p3,p4,nrow = 2)
ggsave("scale25.png", p5, width = 4.5, height = 5)
- 圖例和坐標(biāo)軸
本文結(jié)束,更多好文,歡迎關(guān)注公眾號:pythonic生物人
Python可視化|Matplotlib39-Matplotlib 1.4W+字教程(珍藏版)
Python可視化|Matplotlib&Seaborn36(完結(jié)篇)
python3基礎(chǔ)12詳解模塊和包(庫)|構(gòu)建|使用
Perl基礎(chǔ)系列合集
NGS各種組學(xué)建庫原理(圖解)
總結(jié)
以上是生活随笔為你收集整理的ggplot2中显示坐标轴_R可视化11|ggplot2-图层图形语法 (3)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 外国人眼里中国最贵的平民食物,美国是老干
- 下一篇: spring 两次进入拦截器_4.Spr