日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 人文社科 > 生活经验 >内容正文

生活经验

深入浅出神经网络原理

發(fā)布時間:2023/11/27 生活经验 43 豆豆
生活随笔 收集整理的這篇文章主要介紹了 深入浅出神经网络原理 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

目錄

一、感知器

二、感知器的例子

三、權(quán)重和閾值

四、決策模型

五、矢量化

六、神經(jīng)網(wǎng)絡(luò)的運作過程

七、神經(jīng)網(wǎng)絡(luò)的例子

八、輸出的連續(xù)性


眼下最熱門的技術(shù),絕對是人工智能。

人工智能的底層模型是"神經(jīng)網(wǎng)絡(luò)"(neural network)。許多復(fù)雜的應(yīng)用(比如模式識別、自動控制)和高級模型(比如深度學(xué)習(xí))都基于它。學(xué)習(xí)人工智能,一定是從它開始。

什么是神經(jīng)網(wǎng)絡(luò)呢?網(wǎng)上似乎缺乏通俗的解釋。

前兩天,讀到 Michael Nielsen 的開源教材《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》(Neural Networks and Deep Learning),意外發(fā)現(xiàn)里面的解釋非常好懂。下面,我就按照這本書,介紹什么是神經(jīng)網(wǎng)絡(luò)。

一、感知器

歷史上,科學(xué)家一直希望模擬人的大腦,造出可以思考的機器。人為什么能夠思考?科學(xué)家發(fā)現(xiàn),原因在于人體的神經(jīng)網(wǎng)絡(luò)。

  • 外部刺激通過神經(jīng)末梢,轉(zhuǎn)化為電信號,轉(zhuǎn)導(dǎo)到神經(jīng)細(xì)胞(又叫神經(jīng)元)。
  • 無數(shù)神經(jīng)元構(gòu)成神經(jīng)中樞。
  • 神經(jīng)中樞綜合各種信號,做出判斷。
  • 人體根據(jù)神經(jīng)中樞的指令,對外部刺激做出反應(yīng)。

既然思考的基礎(chǔ)是神經(jīng)元,如果能夠"人造神經(jīng)元"(artificial neuron),就能組成人工神經(jīng)網(wǎng)絡(luò),模擬思考。上個世紀(jì)六十年代,提出了最早的"人造神經(jīng)元"模型,叫做"感知器"(perceptron),直到今天還在用。

?

上圖的圓圈就代表一個感知器。它接受多個輸入(x1,x2,x3...),產(chǎn)生一個輸出(output),好比神經(jīng)末梢感受各種外部環(huán)境的變化,最后產(chǎn)生電信號。

為了簡化模型,我們約定每種輸入只有兩種可能:1 或 0。如果所有輸入都是1,表示各種條件都成立,輸出就是1;如果所有輸入都是0,表示條件都不成立,輸出就是0。

二、感知器的例子

下面來看一個例子。城里正在舉辦一年一度的游戲動漫展覽,小明拿不定主意,周末要不要去參觀。

他決定考慮三個因素。

  • 天氣:周末是否晴天?
  • 同伴:能否找到人一起去?
  • 價格:門票是否可承受?

這就構(gòu)成一個感知器。上面三個因素就是外部輸入,最后的決定就是感知器的輸出。如果三個因素都是 Yes(使用1表示),輸出就是1(去參觀);如果都是 No(使用0表示),輸出就是0(不去參觀)。

三、權(quán)重和閾值

看到這里,你肯定會問:如果某些因素成立,另一些因素不成立,輸出是什么?比如,周末是好天氣,門票也不貴,但是小明找不到同伴,他還要不要去參觀呢?

現(xiàn)實中,各種因素很少具有同等重要性:某些因素是決定性因素,另一些因素是次要因素。因此,可以給這些因素指定權(quán)重(weight),代表它們不同的重要性。

  • 天氣:權(quán)重為8
  • 同伴:權(quán)重為4
  • 價格:權(quán)重為4

上面的權(quán)重表示,天氣是決定性因素,同伴和價格都是次要因素。

如果三個因素都為1,它們乘以權(quán)重的總和就是 8 + 4 + 4 = 16。如果天氣和價格因素為1,同伴因素為0,總和就變?yōu)?8 + 0 + 4 = 12。

這時,還需要指定一個閾值(threshold)。如果總和大于閾值,感知器輸出1,否則輸出0。假定閾值為8,那么 12 > 8,小明決定去參觀。閾值的高低代表了意愿的強烈,閾值越低就表示越想去,越高就越不想去。

上面的決策過程,使用數(shù)學(xué)表達如下。

?

上面公式中,x表示各種外部因素,w表示對應(yīng)的權(quán)重。

四、決策模型

單個的感知器構(gòu)成了一個簡單的決策模型,已經(jīng)可以拿來用了。真實世界中,實際的決策模型則要復(fù)雜得多,是由多個感知器組成的多層網(wǎng)絡(luò)。

上圖中,底層感知器接收外部輸入,做出判斷以后,再發(fā)出信號,作為上層感知器的輸入,直至得到最后的結(jié)果。(注意:感知器的輸出依然只有一個,但是可以發(fā)送給多個目標(biāo)。)

這張圖里,信號都是單向的,即下層感知器的輸出總是上層感知器的輸入。現(xiàn)實中,有可能發(fā)生循環(huán)傳遞,即 A 傳給 B,B 傳給 C,C 又傳給 A,這稱為"遞歸神經(jīng)網(wǎng)絡(luò)"(recurrent neural network),本文不涉及。

?

五、矢量化

為了方便后面的討論,需要對上面的模型進行一些數(shù)學(xué)處理。

  • 外部因素?x1x2x3?寫成矢量?<x1, x2, x3>,簡寫為?x
  • 權(quán)重?w1w2w3?也寫成矢量?(w1, w2, w3),簡寫為?w
  • 定義運算?w?x = ∑ wx,即?w?和?x?的點運算,等于因素與權(quán)重的乘積之和
  • 定義?b?等于負(fù)的閾值?b = -threshold

感知器模型就變成了下面這樣。

?

六、神經(jīng)網(wǎng)絡(luò)的運作過程

一個神經(jīng)網(wǎng)絡(luò)的搭建,需要滿足三個條件。

  • 輸入和輸出
  • 權(quán)重(w)和閾值(b
  • 多層感知器的結(jié)構(gòu)

也就是說,需要事先畫出上面出現(xiàn)的那張圖。

其中,最困難的部分就是確定權(quán)重(w)和閾值(b)。目前為止,這兩個值都是主觀給出的,但現(xiàn)實中很難估計它們的值,必需有一種方法,可以找出答案。

這種方法就是試錯法。其他參數(shù)都不變,w(或b)的微小變動,記作Δw(或Δb),然后觀察輸出有什么變化。不斷重復(fù)這個過程,直至得到對應(yīng)最精確輸出的那組w和b,就是我們要的值。這個過程稱為模型的訓(xùn)練。

?

因此,神經(jīng)網(wǎng)絡(luò)的運作過程如下。

  • 確定輸入和輸出
  • 找到一種或多種算法,可以從輸入得到輸出
  • 找到一組已知答案的數(shù)據(jù)集,用來訓(xùn)練模型,估算wb
  • 一旦新的數(shù)據(jù)產(chǎn)生,輸入模型,就可以得到結(jié)果,同時對wb進行校正

可以看到,整個過程需要海量計算。所以,神經(jīng)網(wǎng)絡(luò)直到最近這幾年才有實用價值,而且一般的 CPU 還不行,要使用專門為機器學(xué)習(xí)定制的 GPU 來計算。

?

七、神經(jīng)網(wǎng)絡(luò)的例子

下面通過車牌自動識別的例子,來解釋神經(jīng)網(wǎng)絡(luò)。

所謂"車牌自動識別",就是高速公路的探頭拍下車牌照片,計算機識別出照片里的數(shù)字。

?

這個例子里面,車牌照片就是輸入,車牌號碼就是輸出,照片的清晰度可以設(shè)置權(quán)重(w)。然后,找到一種或多種圖像比對算法,作為感知器。算法的得到結(jié)果是一個概率,比如75%的概率可以確定是數(shù)字1。這就需要設(shè)置一個閾值(b)(比如85%的可信度),低于這個門檻結(jié)果就無效。

一組已經(jīng)識別好的車牌照片,作為訓(xùn)練集數(shù)據(jù),輸入模型。不斷調(diào)整各種參數(shù),直至找到正確率最高的參數(shù)組合。以后拿到新照片,就可以直接給出結(jié)果了。

八、輸出的連續(xù)性

?

上面的模型有一個問題沒有解決,按照假設(shè),輸出只有兩種結(jié)果:0和1。但是,模型要求w或b的微小變化,會引發(fā)輸出的變化。如果只輸出0和1,未免也太不敏感了,無法保證訓(xùn)練的正確性,因此必須將"輸出"改造成一個連續(xù)性函數(shù)。

這就需要進行一點簡單的數(shù)學(xué)改造。

首先,將感知器的計算結(jié)果wx + b記為z。

z = wx + b

然后,計算下面的式子,將結(jié)果記為σ(z)。

σ(z) = 1 / (1 + e^(-z))

這是因為如果z趨向正無窮z → +∞(表示感知器強烈匹配),那么σ(z) → 1;如果z趨向負(fù)無窮z → -∞(表示感知器強烈不匹配),那么σ(z) → 0。也就是說,只要使用σ(z)當(dāng)作輸出結(jié)果,那么輸出就會變成一個連續(xù)性函數(shù)。

原來的輸出曲線是下面這樣。

現(xiàn)在變成了這樣。

?

實際上,還可以證明Δσ滿足下面的公式。

即Δσ和Δw和Δb之間是線性關(guān)系,變化率是偏導(dǎo)數(shù)。這就有利于精確推算出w和b的值了。?

總結(jié)

以上是生活随笔為你收集整理的深入浅出神经网络原理的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。