日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人文社科 > 生活经验 >内容正文

生活经验

keras 的 example 文件 cifar10_cnn.py 解析

發布時間:2023/11/27 生活经验 41 豆豆
生活随笔 收集整理的這篇文章主要介紹了 keras 的 example 文件 cifar10_cnn.py 解析 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

這個示例很簡單,就是從cifar10中讀取數據集,通過卷積神經網絡進行圖像識別

輸入數據的shape

x_train.shape (50000, 32, 32, 3)
y_train.shape (50000, 10)

?

神經網絡結構:

________________________________________________________________________________
Layer (type)                        Output Shape                    Param #
================================================================================
conv2d_1 (Conv2D)                   (None, 32, 32, 32)              896
________________________________________________________________________________
activation_1 (Activation)           (None, 32, 32, 32)              0
________________________________________________________________________________
conv2d_2 (Conv2D)                   (None, 30, 30, 32)              9248
________________________________________________________________________________
activation_2 (Activation)           (None, 30, 30, 32)              0
________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D)      (None, 15, 15, 32)              0
________________________________________________________________________________
dropout_1 (Dropout)                 (None, 15, 15, 32)              0
________________________________________________________________________________
conv2d_3 (Conv2D)                   (None, 15, 15, 64)              18496
________________________________________________________________________________
activation_3 (Activation)           (None, 15, 15, 64)              0
________________________________________________________________________________
conv2d_4 (Conv2D)                   (None, 13, 13, 64)              36928
________________________________________________________________________________
activation_4 (Activation)           (None, 13, 13, 64)              0
________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D)      (None, 6, 6, 64)                0
________________________________________________________________________________
dropout_2 (Dropout)                 (None, 6, 6, 64)                0
________________________________________________________________________________
flatten_1 (Flatten)                 (None, 2304)                    0
________________________________________________________________________________
dense_1 (Dense)                     (None, 512)                     1180160
________________________________________________________________________________
activation_5 (Activation)           (None, 512)                     0
________________________________________________________________________________
dropout_3 (Dropout)                 (None, 512)                     0
________________________________________________________________________________
dense_2 (Dense)                     (None, 10)                      5130
________________________________________________________________________________
activation_6 (Activation)           (None, 10)                      0
================================================================================
Total params: 1,250,858
Trainable params: 1,250,858
Non-trainable params: 0
________________________________________________________________________________

代碼同時演示了?ImageDataGenerator 的使用

?

——————————————————————

總目錄

keras的example文件解析

總結

以上是生活随笔為你收集整理的keras 的 example 文件 cifar10_cnn.py 解析的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。