日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【数字信号处理】傅里叶变换性质 ( 序列傅里叶变换共轭对称性质示例 )

發布時間:2025/6/17 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【数字信号处理】傅里叶变换性质 ( 序列傅里叶变换共轭对称性质示例 ) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

文章目錄

  • 一、序列傅里葉變換共軛對稱性質示例
    • 1、序列傅里葉變換共軛對稱性質
      • 1、序列實部傅里葉變換
      • 2、序列虛部傅里葉變換
      • 3、共軛對稱序列傅里葉變換
      • 4、共軛反對稱序列傅里葉變換
  • 2、求 a^n u(n) 的傅里葉變換
  • 3、序列分析





一、序列傅里葉變換共軛對稱性質示例



x(n)=anu(n)x(n) = a^n u(n)x(n)=anu(n) , 且 ∣a∣<1|a|<1a<1


1、序列傅里葉變換共軛對稱性質



1、序列實部傅里葉變換


x(n)x(n)x(n) 序列的 實部 xR(n)x_R(n)xR?(n) 的 傅里葉變換 , 就是 x(n)x(n)x(n)傅里葉變換 X(ejω)X(e^{j \omega})X(ejω)共軛對稱序列 Xe(ejω)X_e(e^{j \omega})Xe?(ejω);

xR(n)x_R(n)xR?(n) 的 傅里葉變換 Xe(ejω)X_e(e^{j \omega})Xe?(ejω) 具備 共軛對稱性 ;

xR(n)?SFTXe(ejω)x_R(n) \overset{SFT} \longleftrightarrow X_e(e^{j \omega})xR?(n)?SFT?Xe?(ejω)


2、序列虛部傅里葉變換


x(n)x(n)x(n) 序列的 虛部 xI(n)x_I(n)xI?(n) 的 傅里葉變換 , 就是 x(n)x(n)x(n)傅里葉變換 X(ejω)X(e^{j \omega})X(ejω)共軛反對稱序列 Xo(ejω)X_o(e^{j \omega})Xo?(ejω);

jxI(n)jx_I(n)jxI?(n) 的 傅里葉變換 Xo(ejω)X_o(e^{j \omega})Xo?(ejω) 具備 共軛反對稱性 :

jxI(n)?SFTXo(ejω)jx_I(n) \overset{SFT} \longleftrightarrow X_o(e^{j \omega})jxI?(n)?SFT?Xo?(ejω)


3、共軛對稱序列傅里葉變換


x(n)x(n)x(n)共軛對稱序列 xe(n)x_e(n)xe?(n)傅里葉變換 , 一定是一個 實序列 XR(ejω)X_R(e^{j \omega})XR?(ejω)

xe(n)?SFTXR(ejω)x_e(n) \overset{SFT} \longleftrightarrow X_R(e^{j \omega})xe?(n)?SFT?XR?(ejω)


4、共軛反對稱序列傅里葉變換


x(n)x(n)x(n)共軛反對稱序列 xo(n)x_o(n)xo?(n)傅里葉變換 , 一定是一個 純虛序列 XR(ejω)X_R(e^{j \omega})XR?(ejω)

xo(n)?SFTjXI(ejω)x_o(n) \overset{SFT} \longleftrightarrow jX_I(e^{j \omega})xo?(n)?SFT?jXI?(ejω)


2、求 a^n u(n) 的傅里葉變換


根據 傅里葉變換公式 計算 x(n)x(n)x(n) 的傅里葉變換 , 公式如下 :

X(ejω)=∑n=?∞+∞x(n)e?jωnX(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n}X(ejω)=n=?+?x(n)e?jωn

anu(n)a^nu(n)anu(n)

序列 , 直接帶入到

X(ejω)=∑n=?∞+∞x(n)e?jωnX(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n}X(ejω)=n=?+?x(n)e?jωn

傅里葉變換公式中 , 可得到 :

X(ejω)=∑n=0+∞ane?jωnX(e^{j\omega}) = \sum_{n=0}^{+\infty} a^n e^{-j \omega n}X(ejω)=n=0+?ane?jωn

根據 " 等比級數求和 " 公式 , 可以得到

X(ejω)=11?ae?jωX(e^{j\omega}) = \cfrac{1}{1-ae^{-j \omega}}X(ejω)=1?ae?jω1?


3、序列分析


該信號 x(n)x(n)x(n) 是實信號 , 該信號既不是偶對稱的 , 也不是奇對稱的 ;

  • 只有序列是偶對稱時 , 才有 xe(n)?SFTXR(ejω)x_e(n) \overset{SFT} \longleftrightarrow X_R(e^{j \omega})xe?(n)?SFT?XR?(ejω) 性質 ,

  • 只有序列是奇對稱時 , 才有 xo(n)?SFTjXI(ejω)x_o(n) \overset{SFT} \longleftrightarrow jX_I(e^{j \omega})xo?(n)?SFT?jXI?(ejω) 性質 ;

因此 , 這里 x(n)x(n)x(n) 的傅里葉變換 , 既不是實數 , 也不是虛數 , 那么就一定是復數 ;


分析 x(n)x(n)x(n) 的傅里葉變換 復數序列的 實部 和 虛部 :

由于 x(n)=anu(n)x(n) = a^n u(n)x(n)=anu(n) 序列是實數 ,

其 傅里葉變換

SFT[x(n)]=X(ejω)=11?ae?jωSFT[x(n)] =X(e^{j\omega}) = \cfrac{1}{1-ae^{-j \omega}}SFT[x(n)]=X(ejω)=1?ae?jω1?

一定是共軛對稱的 ;

分解 SFT[x(n)]SFT[x(n)]SFT[x(n)] 的實部和虛部 :

X(ejω)=1?acos?ω1+a2?2acos?ω?jasin?ω1+a2?2acos?ωX(e^{j\omega}) = \cfrac{1 - a\cos \omega}{1 + a^2 - 2a\cos \omega } - j\cfrac{a\sin \omega}{1 + a^2 - 2a\cos \omega }X(ejω)=1+a2?2acosω1?acosω??j1+a2?2acosωasinω?

共軛對稱 的 傅里葉變換 , 實部是 偶對稱的 , 虛部是 奇對稱 的 ;


傅里葉變換的 模 , 即 傅里葉變換 取絕對值 ∣X(ejω)∣|X(e^{j\omega})|X(ejω) , 是偶對稱的 ;

∣X(ejω)∣=1(1+a2?2acos?ω)12|X(e^{j\omega})| = \cfrac{1}{ ( 1 + a^2 - 2a\cos \omega )^{\frac{1}{2}} }X(ejω)=(1+a2?2acosω)21?1?


根據如下定理 : x(n)x(n)x(n)共軛對稱序列 xe(n)x_e(n)xe?(n)傅里葉變換 , 一定是一個 實序列 XR(ejω)X_R(e^{j \omega})XR?(ejω)

xe(n)?SFTXR(ejω)x_e(n) \overset{SFT} \longleftrightarrow X_R(e^{j \omega})xe?(n)?SFT?XR?(ejω)

可得 : 傅里葉變換的 實部 1?acos?ω1+a2?2acos?ω\cfrac{1 - a\cos \omega}{1 + a^2 - 2a\cos \omega }1+a2?2acosω1?acosω? 的 傅里葉反變換 , 對應的是 x(n)x(n)x(n) 的共軛對稱分量 ;

傅里葉變換的 虛部 ?jasin?ω1+a2?2acos?ω- j\cfrac{a\sin \omega}{1 + a^2 - 2a\cos \omega }?j1+a2?2acosωasinω? 的 傅里葉反變換 , 對應的是 x(n)x(n)x(n) 的共軛反對稱分量 ;


在 【數字信號處理】傅里葉變換性質 ( 序列對稱分解定理示例 | 共軛對稱序列與原序列之間的關系 | 共軛反對稱序列與原序列之間的關系 ) 博客中 , 推導了 共軛對稱序列 與原序列的關系 , 這里當做一個先決的條件 , 之后需要使用 ;

實因果序列的對稱序列與原序列關系 : 先將結果放在這里 , 之后需要使用 ;

he(n)h_e(n)he?(n)h(n)h(n)h(n) 關系 :

he(n)={h(0)n=0h(n)2n>0h(?n)2n<0h_e(n) =\begin{cases} h(0) & n = 0 \\\\ \cfrac{h(n)}{2} & n > 0 \\\\ \cfrac{h(-n)}{2} & n < 0 \end{cases}he?(n)=????????????????????h(0)2h(n)?2h(?n)??n=0n>0n<0?

ho(n)h_o(n)ho?(n)h(n)h(n)h(n) 關系 :

ho(n)={0n=0h(n)2n>0?h(?n)2n<0h_o(n) =\begin{cases} 0 & n = 0 \\\\ \cfrac{h(n)}{2} & n > 0 \\\\ \cfrac{-h(-n)}{2} & n < 0 \end{cases}ho?(n)=????????????????????02h(n)?2?h(?n)??n=0n>0n<0?


下面繼續分析上述序列 :

下面的序列 xe(n)x_e(n)xe?(n) 為實偶 ,

xe(n)={1n=0an2n>0a?n2n<0x_e(n) =\begin{cases} 1 & n = 0 \\\\ \cfrac{a^n}{2} & n > 0 \\\\ \cfrac{a^{-n}}{2} & n < 0 \end{cases}xe?(n)=????????????????????12an?2a?n??n=0n>0n<0?

根據如下定理 :

如果 x(n)x(n)x(n) 序列 是 " 實序列 " , " 偶對稱的 " , 則其傅里葉變換 X(ejω)X(e^{j \omega})X(ejω) 也是 " 實序列 " , " 偶對稱的 " ;

xe(n)x_e(n)xe?(n) 的 傅里葉變換 XR(ejω)X_R(e^{j \omega})XR?(ejω) 也是 實偶 的 ;


下面的序列 xo(n)x_o(n)xo?(n) 為實奇 ,

xo(n)={0n=0an2n>0?a?n2n<0x_o(n) =\begin{cases} 0 & n = 0 \\\\ \cfrac{a^n}{2} & n > 0 \\\\ -\cfrac{a^{-n}}{2} & n < 0 \end{cases}xo?(n)=????????????????????02an??2a?n??n=0n>0n<0?

根據如下定理 :

如果 x(n)x(n)x(n) 序列 是 " 實序列 " , " 奇對稱的 " , 則其傅里葉變換 X(ejω)X(e^{j \omega})X(ejω) 也是 " 虛序列 " , " 奇對稱的 " ;

xo(n)x_o(n)xo?(n) 的 傅里葉變換 jXI(ejω)jX_I(e^{j \omega})jXI?(ejω) 也是 虛奇 的 ;


原序列 x(n)x(n)x(n) 圖像如下 :

x(?n)x(-n)x(?n) 圖像 , 就是將 x(n)x(n)x(n) 圖像 , 以 yyy 軸為中心進行鏡像 :

x(n)x(n)x(n) 序列的 共軛對稱分量 xe(n)x_e(n)xe?(n) 就是 x(n)x(n)x(n)x(?n)x(-n)x(?n) 相加 , 除以 222 :

xe(n)=x(n)+x(?n)2x_e(n) = \cfrac{x(n) + x(-n)}{2}xe?(n)=2x(n)+x(?n)?

x(n)x(n)x(n) 序列的 共軛反對稱分量 xo(n)x_o(n)xo?(n) 就是 x(n)x(n)x(n)x(?n)x(-n)x(?n) 相減 , 除以 222 :

xo(n)=x(n)?x(?n)2x_o(n) = \cfrac{x(n) - x(-n)}{2}xo?(n)=2x(n)?x(?n)?

x(n)x(n)x(n) 的模 圖像如下 , 是偶對稱的 ;

x(n)x(n)x(n) 的 實部 圖像如下 , 是偶對稱的 ;

x(n)x(n)x(n) 的 虛部 圖像如下 , 是奇對稱的 ;

x(n)x(n)x(n) 的 相位 圖像如下 , 是奇對稱的 ;

總結

以上是生活随笔為你收集整理的【数字信号处理】傅里叶变换性质 ( 序列傅里叶变换共轭对称性质示例 )的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 国产精品综合在线 | 精品黄色在线观看 | 日韩精品在线观看网站 | 国产午夜精品一区二区三区视频 | 妺妺窝人体色www在线下载 | 涩涩涩涩涩涩涩涩涩 | 久久久社区 | 99re在线视频精品 | 男女做爰真人视频直播 | 一区黄色 | 国产精品日韩在线 | 日韩天天| 久久亚洲av午夜福利精品一区 | 亚洲精品乱码久久久久久写真 | 99这里都是精品 | 亚洲好视频 | 在线免费观看污网站 | 变态 另类 国产 亚洲 | 91theporn国产在线观看 | 古装做爰无遮挡三级 | 欧美色图亚洲视频 | 欧美性猛交ⅹxx乱大交 | 丰满人妻老熟妇伦人精品 | 91精品国产综合久久久蜜臀图片 | 污色视频| 成年激情网 | 激情a| 亚洲成人麻豆 | 中文久久字幕 | 日韩一级在线播放 | youjizz国产 | 我要操婊| 亚洲综合图色40p | 在线观看免费观看在线 | 免费a网 | 91爱爱com | 免费禁漫天堂a3d | 欧美性xxxxx 亚洲特黄一级片 | 公车激情云雨小说 | 欧美xxxⅹ性欧美大片 | 成人激情四射 | 欧美区二区三区 | 成人自拍视频在线观看 | 饥渴少妇色诱水电工 | 韩国日本在线 | 中国极品少妇xxxxx | 日韩国产网站 | 亚洲女人的天堂 | 美日韩免费 | 男女av网站 | 欧美日韩伊人 | 天天做天天爱夜夜爽 | 久久香蕉国产 | 三级色网站 | 国模无码一区二区三区 | 草草影院一区二区三区 | 91蝌蚪91密月| 亚洲国产日韩a在线播放性色 | 成人在线中文字幕 | 天天综合av | 在线观看a网站 | 神马久久精品 | 国产精品永久在线 | wwwav视频 | 精品视频不卡 | 欧美人与动性xxxxx杂性 | 国产网红主播精品av | 亚洲人成免费 | av女优天堂在线观看 | 黄色福利网站 | 人妻久久一区二区 | 欧美日韩一区在线观看 | 久久妇女 | 中国老妇性视频 | 久久黄色录像 | 黄色一二三区 | 日日爱669| 亚洲精品一区二区三区蜜桃 | 冲田杏梨av | 不卡一区二区在线视频 | 亚洲人人插 | 国内性视频 | 性折磨bdsm欧美激情另类 | 亚洲AV无码阿娇国产精品 | 调教在线观看 | 韩国三级中文字幕hd久久精品 | 一级性生活毛片 | 国内偷拍一区二区 | 99欧美| 亚洲中文字幕一区在线 | 欧美透逼视频 | 日日摸日日操 | 国产精品久久久久久免费免熟 | 波多野结衣潜藏淫欲 | 96视频在线 | 第一章婶婶的性事 | 丰满肥臀噗嗤啊x99av | 久久久久久久久久久丰满 | 久久精品爱|