日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

超过 150 个最佳机器学习,NLP 和 Python教程

發布時間:2025/6/16 python 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 超过 150 个最佳机器学习,NLP 和 Python教程 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

作者:chen_h
微信號 & QQ:862251340
微信公眾號:coderpai
我的博客:請點擊這里

我把這篇文章分為四個部分:機器學習,NLP,Python 和 數學。我在每一部分都會包含一些關鍵主題,但是網上資料太廣泛了,所以我不可能包括每一個可能的主題。

如果你發現好的教程,請告訴我。在這篇文章中,我把每個主題的教程數量都是控制在五到六個,這些精選出來的教程都是非常重要的。每一個鏈接都會鏈接到別的鏈接,從而導致很多新的教程。

Machine Learning

  • Machine Learning is Fun! (medium.com/@ageitgey)

  • Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)

  • An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)

  • A Gentle Guide to Machine Learning (monkeylearn.com)

  • Which machine learning algorithm should I use? (sas.com)

Activation and Loss Functions

  • Sigmoid neurons (neuralnetworksanddeeplearning.com)

  • What is the role of the activation function in a neural network? (quora.com)

  • [Comprehensive list of activation functions in neural networks with pros/cons]12

  • Activation functions and it’s types-Which is better? (medium.com)

  • Making Sense of Logarithmic Loss (exegetic.biz)

  • Loss Functions (Stanford CS231n)

  • L1 vs. L2 Loss function (rishy.github.io)

  • The cross-entropy cost function (neuralnetworksanddeeplearning.com)

Bias

  • Role of Bias in Neural Networks (stackoverflow.com)

  • Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)

  • What is bias in artificial neural network? (quora.com)

Perceptron

  • Perceptrons (neuralnetworksanddeeplearning.com)

  • The Perception (natureofcode.com)

  • Single-layer Neural Networks (Perceptrons) (dcu.ie)

  • From Perceptrons to Deep Networks (toptal.com)

Regression

  • Introduction to linear regression analysis (duke.edu)

  • Linear Regression (ufldl.stanford.edu)

  • Linear Regression (readthedocs.io)

  • Logistic Regression (readthedocs.io)

  • [Simple Linear Regression Tutorial for Machine Learning]29

  • [Logistic Regression Tutorial for Machine Learning]30

  • Softmax Regression (ufldl.stanford.edu)

Gradient Descent

  • Learning with gradient descent (neuralnetworksanddeeplearning.com)

  • Gradient Descent (iamtrask.github.io)

  • How to understand Gradient Descent algorithm (kdnuggets.com)

  • [An overview of gradient descent optimization algorithms]35

  • Optimization: Stochastic Gradient Descent (Stanford CS231n)

Generative Learning

  • Generative Learning Algorithms (Stanford CS229)

  • A practical explanation of a Naive Bayes classifier (monkeylearn.com)

Support Vector Machines

  • An introduction to Support Vector Machines (SVM) (monkeylearn.com)

  • Support Vector Machines (Stanford CS229)

  • Linear classification: Support Vector Machine, Softmax (Stanford 231n)

Backpropagation

  • Yes you should understand backprop (medium.com/@karpathy)

  • Can you give a visual explanation for the back propagation algorithm for neural networks? (github.com/rasbt)

  • [How the backpropagation algorithm works]45

  • Backpropagation Through Time and Vanishing Gradients (wildml.com)

  • [A Gentle Introduction to Backpropagation Through Time]47

  • Backpropagation, Intuitions (Stanford CS231n)

Deep Learning

  • Deep Learning in a Nutshell (nikhilbuduma.com)

  • A Tutorial on Deep Learning (Quoc V. Le)

  • What is Deep Learning? (machinelearningmastery.com)

  • What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? (nvidia.com)

Optimization and Dimensionality Reduction

  • Seven Techniques for Data Dimensionality Reduction (knime.org)

  • Principal components analysis (Stanford CS229)

  • Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)

  • How to train your Deep Neural Network (rishy.github.io)

Long Short Term Memory(LSTM)

  • [A Gentle Introduction to Long Short-Term Memory Networks by the Experts]57

  • Understanding LSTM Networks (colah.github.io)

  • Exploring LSTMs (echen.me)

  • Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)

Convolutional Neural Networks (CNNs)

  • Introducing convolutional networks (neuralnetworksanddeeplearning.com)

  • [Deep Learning and Convolutional Neural Networks]62

  • Conv Nets: A Modular Perspective (colah.github.io)

  • Understanding Convolutions (colah.github.io)

Recurrent Neural Nets (RNNs)

  • Recurrent Neural Networks Tutorial (wildml.com)

  • Attention and Augmented Recurrent Neural Networks (distill.pub)

  • [The Unreasonable Effectiveness of Recurrent Neural Networks]68

  • A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)

Reinforcement Learning

  • [Simple Beginner’s guide to Reinforcement Learning & its implementation]70

  • A Tutorial for Reinforcement Learning (mst.edu)

  • Learning Reinforcement Learning (wildml.com)

  • Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)

Generative Adversarial Networks (GANs)

  • What’s a Generative Adversarial Network? (nvidia.com)

  • [Abusing Generative Adversarial Networks to Make 8-bit Pixel Art]75

  • An introduction to Generative Adversarial Networks (with code in TensorFlow) (aylien.com)

  • Generative Adversarial Networks for Beginners (oreilly.com)

Multi-task Learning

  • [An Overview of Multi-Task Learning in Deep Neural Networks]78

NLP

  • A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)

  • The Definitive Guide to Natural Language Processing (monkeylearn.com)

  • Introduction to Natural Language Processing (algorithmia.com)

  • Natural Language Processing Tutorial (vikparuchuri.com)

  • Natural Language Processing (almost) from Scratch (arxiv.org)

Deep Learning and NLP

  • Deep Learning applied to NLP (arxiv.org)

  • Deep Learning for NLP (without Magic) (Richard Socher)

  • Understanding Convolutional Neural Networks for NLP (wildml.com)

  • Deep Learning, NLP, and Representations (colah.github.io)

  • Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)

  • [Understanding Natural Language with Deep Neural Networks Using Torch]89

  • Deep Learning for NLP with Pytorch (pytorich.org)

Word Vectors

  • Bag of Words Meets Bags of Popcorn (kaggle.com)

  • On word embeddings Part I, Part II, Part III (sebastianruder.com)

  • The amazing power of word vectors (acolyer.org)

  • word2vec Parameter Learning Explained (arxiv.org)

  • Word2Vec Tutorial?—?The Skip-Gram Model, [Negative Sampling]98

Encoder-Decoder

  • Attention and Memory in Deep Learning and NLP (wildml.com)

  • Sequence to Sequence Models (tensorflow.org)

  • Sequence to Sequence Learning with Neural Networks (NIPS 2014)

  • Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)

  • [How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers]103

  • tf-seq2seq (google.github.io)

Python

  • 7 Steps to Mastering Machine Learning With Python (kdnuggets.com)

  • An example machine learning notebook (nbviewer.jupyter.org)

Examples

  • [How To Implement The Perceptron Algorithm From Scratch In Python]107

  • Implementing a Neural Network from Scratch in Python (wildml.com)

  • A Neural Network in 11 lines of Python (iamtrask.github.io)

  • [Implementing Your Own k-Nearest Neighbour Algorithm Using Python]110

  • Demonstration of Memory with a Long Short-Term Memory Network in Python (machinelearningmastery.com)

  • How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)

  • [How to Learn to Add Numbers with seq2seq Recurrent Neural Networks]113

Scipy and numpy

  • Scipy Lecture Notes (scipy-lectures.org)

  • Python Numpy Tutorial (Stanford CS231n)

  • An introduction to Numpy and Scipy (UCSB CHE210D)

  • A Crash Course in Python for Scientists (nbviewer.jupyter.org)

scikit-learn

  • PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)

  • scikit-learn Classification Algorithms (github.com/mmmayo13)

  • scikit-learn Tutorials (scikit-learn.org)

  • Abridged scikit-learn Tutorials (github.com/mmmayo13)

Tensorflow

  • Tensorflow Tutorials (tensorflow.org)

  • Introduction to TensorFlow?—?CPU vs GPU (medium.com/@erikhallst…)

  • TensorFlow: A primer (metaflow.fr)

  • RNNs in Tensorflow (wildml.com)

  • Implementing a CNN for Text Classification in TensorFlow (wildml.com)

  • How to Run Text Summarization with TensorFlow (surmenok.com)

PyTorch

  • PyTorch Tutorials (pytorch.org)

  • A Gentle Intro to PyTorch (gaurav.im)

  • Tutorial: Deep Learning in PyTorch (iamtrask.github.io)

  • PyTorch Examples (github.com/jcjohnson)

  • PyTorch Tutorial (github.com/MorvanZhou)

  • PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)

Math

  • Math for Machine Learning (ucsc.edu)

  • Math for Machine Learning (UMIACS CMSC422)

Linear algebra

  • An Intuitive Guide to Linear Algebra (betterexplained.com)

  • A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)

  • Understanding the Cross Product (betterexplained.com)

  • Understanding the Dot Product (betterexplained.com)

  • Linear Algebra for Machine Learning (U. of Buffalo CSE574)

  • Linear algebra cheat sheet for deep learning (medium.com)

  • Linear Algebra Review and Reference (Stanford CS229)

Probability

  • Understanding Bayes Theorem With Ratios (betterexplained.com)

  • Review of Probability Theory (Stanford CS229)

  • Probability Theory Review for Machine Learning (Stanford CS229)

  • Probability Theory (U. of Buffalo CSE574)

  • Probability Theory for Machine Learning (U. of Toronto CSC411)

Calculus

  • How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)

  • [How To Understand Derivatives: The Product, Power & Chain Rules]150

  • Vector Calculus: Understanding the Gradient (betterexplained.com)

  • Differential Calculus (Stanford CS224n)

  • Calculus Overview (readthedocs.io)


CoderPai 是一個專注于算法實戰的平臺,從基礎的算法到人工智能算法都有設計。如果你對算法實戰感興趣,請快快關注我們吧。加入AI實戰微信群,AI實戰QQ群,ACM算法微信群,ACM算法QQ群。長按或者掃描如下二維碼,關注 “CoderPai” 微信號(coderpai)


總結

以上是生活随笔為你收集整理的超过 150 个最佳机器学习,NLP 和 Python教程的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 日韩成人在线观看 | 国语对白真实视频播放 | 中文字幕一区二区三区乱码 | 男同av在线观看一区二区三区 | 自拍 亚洲 欧美 | 日本aⅴ视频 | 欧美色图激情 | 亚洲视频在线播放 | 99热在线观看免费精品 | 香蕉伊思人视频 | 西西人体做爰大胆gogo直播 | www.三级.com | 日韩小视频在线观看 | 国产精品一二三区在线观看 | 草莓视频一区二区三区 | 欧美日本在线视频 | 伊人精品一区二区三区 | 女人毛片视频 | 亚洲午夜网 | 欧美黑人性xxx | 贝利弗山的秘密1985版免费观看 | 亚洲精品免费在线 | 色七七桃花综合影院 | 国产精品夜夜夜爽张柏芝 | 色噜噜狠狠一区二区 | 青青视频在线免费观看 | 亚洲国产精品国自产拍av | 中文精品一区二区三区 | 狼人香蕉 | 国产九九精品视频 | 欧美日韩在线视频免费播放 | 亚洲一区二区三区影院 | a视频在线| 精品成人无码一区二区三区 | 国产第二页 | 欧美一区二 | 中文字幕亚洲无线码在线一区 | 亚洲永久无码精品 | 性盈盈影院中文字幕 | 久久天天躁狠狠躁夜夜av | 亚洲午夜网 | 激情黄色小说视频 | 国产新婚疯狂做爰视频 | 伊人中文字幕在线观看 | 一区二区视频在线播放 | 91福利一区二区 | 风流老熟女一区二区三区 | 一区二区欧美视频 | 欧美一区二区二区 | 色妇网| 午夜激情四射 | 福利视频免费看 | 国产欧美日韩激情 | 国产伊人久久 | 国产精品自偷自拍 | 久久99精品国产麻豆婷婷 | 高清免费视频日本 | 97在线看 | 亚洲在线精品视频 | 日韩精品福利视频 | 黄色大片在线 | 撕开少妇裙子猛然进入 | 国产涩涩| 色小姐av| 在线看日韩av | 成人免费午夜视频 | 一道本在线播放 | 狠狠狠狠狠 | 无码人妻aⅴ一区二区三区日本 | 真人毛片97级无遮挡精品 | 欧美日韩激情在线 | 日本sm调教—视频|vk | 一级二级毛片 | 日韩三级在线播放 | 日本一区二区视频在线播放 | 无码gogo大胆啪啪艺术 | 成人免费毛片东京热 | 三级网站在线看 | 欧美激情偷拍 | 欧洲a级片 | 成人1区2区3区 | 一区二区 中文字幕 | 国产亚洲一区二区三区不卡 | 久久精品视频9 | 亚洲久久在线观看 | 视频区小说区图片区 | 天天爽天天做 | 亚洲网站av | 亚洲一区二区三区免费视频 | 男生操女生屁股 | 视频一区二区不卡 | 另类男人与善交video | 日本在线免费视频 | 免费看国产曰批40分钟 | 精品成人一区二区 | 最近更新中文字幕 | 性色av网址 | 日本啊啊视频 | 波多野结衣在线电影 |