日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Apache Kafka - Schema Registry

發布時間:2025/5/22 编程问答 21 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Apache Kafka - Schema Registry 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

關于我們為什么需要Schema Registry?

參考,

https://www.confluent.io/blog/how-i-learned-to-stop-worrying-and-love-the-schema-part-1/

https://www.confluent.io/blog/schema-registry-kafka-stream-processing-yes-virginia-you-really-need-one/

https://www.confluent.io/blog/stream-data-platform-2/

Use Avro as Your Data Format

We think Avro is the best choice for a number of reasons:

  • It has a direct mapping to and from JSON
  • It has a very compact format. The bulk of JSON, repeating every field name with every single record, is what makes JSON inefficient for high-volume usage.
  • It is very fast.
  • It has great bindings for a wide variety of programming languages so you can generate Java objects that make working with event data easier, but it does not require code generation so tools can be written generically for any data stream.
  • It has a rich, extensible schema language defined in pure JSON
  • It has the best notion of compatibility for evolving your data over time.
  • ?

    One of the critical features of Avro is the ability to define a schema for your data. For example an event that represents the sale of a product might look like this:

    {"time": 1424849130111,"customer_id": 1234,"product_id": 5678,"quantity":3,"payment_type": "mastercard" }

    It might have a schema like this that defines these five fields:

    {"type": "record","doc":"This event records the sale of a product","name": "ProductSaleEvent","fields" : [{"name":"time", "type":"long", "doc":"The time of the purchase"},{"name":"customer_id", "type":"long", "doc":"The customer"},{"name":"product_id", "type":"long", "doc":"The product"},{"name":"quantity", "type":"int"},{"name":"payment","type":{"type":"enum","name":"payment_types","symbols":["cash","mastercard","visa"]},"doc":"The method of payment"}] }

    ?

    Here is how these schemas will be put to use. You will associate a schema like this with each Kafka topic. You can think of the schema much like the schema of a relational database table, giving the requirements for data that is produced into the topic as well as giving instructions on how to interpret data read from the topic.

    The schemas end up serving a number of critical purposes:

  • They let the producers or consumers of data streams know the right fields are need in an event and what type each field is.
  • They document the usage of the event and the meaning of each field in the “doc” fields.
  • They protect downstream data consumers from malformed data, as only valid data will be permitted in the topic.
  • ?

    The Need For Schemas

    Robustness

    One of the primary advantages of this type of architecture where data is modeled as streams is that applications are decoupled.

    Clarity and Semantics

    Worse, the actual meaning of the data becomes obscure and often misunderstood by different applications because there is no real canonical documentation for the meaning of the fields. One person interprets a field one way and populates it accordingly and another interprets it differently.

    Compatibility

    Schemas also help solve one of the hardest problems in organization-wide data flow: modeling and handling change in data format. Schema definitions just capture a point in time, but your data needs to evolve with your business and with your code.

    Schemas give a mechanism for reasoning about which format changes will be compatible and (hence won’t require reprocessing) and which won’t.

    Schemas are a Conversation

    However data streams are different; they are a broadcast channel. Unlike an application’s database, the writer of the data is, almost by definition, not the reader. And worse, there are many readers, often in different parts of the organization. These two groups of people, the writers and the readers, need a concrete way to describe the data that will be exchanged between them and schemas provide exactly this.

    Schemas Eliminate The Manual Labor of Data Science

    It is almost a truism that data science, which I am using as a short-hand here for “putting data to effective use”, is 80% parsing, validation, and low-level data munging.

    ?

    KIP-69 - Kafka Schema Registry

    pending狀態,這個KIP估計會被cancel掉

    因為confluent.inc已經提供相應的方案,

    https://github.com/confluentinc/schema-registry

    http://docs.confluent.io/3.0.1/schema-registry/docs/index.html

    比較牛逼的是,有人為這個開發了UI,

    https://www.landoop.com/blog/2016/08/schema-registry-ui/

    本身使用,都是通過http進行Schema的讀寫,比較簡單

    ?

    設計,

    參考, http://docs.confluent.io/3.0.1/schema-registry/docs/design.html

    主備架構,通過zk來選主

    每個schema需要一個唯一id,這個id也通過zk來保證遞增

    schema存在kafka的一個特殊的topic中,_schemas,一個單partition的topic

    我的理解,在注冊和查詢schema的時候,是通過local caches進行檢索的,kafka的topic可以用于replay來重建caches

    總結

    以上是生活随笔為你收集整理的Apache Kafka - Schema Registry的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 少妇一级淫片免费视频 | 午夜黄色福利 | 欧美成人秋霞久久aa片 | 噼里啪啦国语版在线观看 | 欧美在线视频免费播放 | 老女人毛片 | www.伊人网 | 久久mm| 91传媒在线播放 | 浪漫樱花动漫在线观看免费 | 久久精品香蕉视频 | 日本在线高清视频 | 在线永久看片免费的视频 | 亚洲国产欧美视频 | 香蕉大人久久国产成人av | 日日爽 | 亚洲欧美成人一区 | www.视频一区| julia一区 | 美女涩涩网站 | 亚洲国产极品 | 日韩欧美在线观看一区二区 | 美女二区 | 日韩成人在线观看 | 亚洲欧美日韩中文在线 | 求一个黄色网址 | www.97ai.com | 狠狠躁狠狠躁视频专区 | 在线视频第一页 | 久久精品亚洲无码 | 欧美高清视频一区二区 | 亚洲综合精品视频 | 好吊视频一区二区三区四区 | 69人妻一区二区三区 | 日日躁夜夜躁狠狠躁 | 天天艹av | 国产精品亚洲天堂 | 国产原创视频在线 | 性欧美巨大乳 | 少妇野外性xx老女人野外性xx | 国产良妇出轨视频在线观看 | 亚洲欧洲自拍偷拍 | 欧美久久久| 2021国产在线视频 | 国产做a | 天天干狠狠爱 | 欧美亚洲精品一区 | 影音先锋亚洲成aⅴ人在 | 99色影院| 黄在线免费观看 | 日本高清视频免费看 | 免费在线播放av | 九七影院在线观看免费观看电视 | 18男女无套免费视频 | 亚洲综合色吧 | 尤物视频在线观看 | 亚洲欧美日韩精品永久在线 | 亚洲a成人 | 精品一区在线视频 | 欧美一区二区在线免费观看 | 欧美videossex另类 | 国产精品77777 | 天天看黄色 | 国产一区二区三区日韩 | 热热色国产 | 美女网站黄频 | 久久艹这里只有精品 | 欧美日本高清视频 | 日本亲子乱子伦xxxx50路 | 97香蕉碰碰人妻国产欧美 | 午夜天堂精品久久久久 | 五月天综合 | www.看毛片| 97人妻精品一区二区三区视频 | 色图插插插| 成熟的女同志hd | 老汉色老汉首页av亚洲 | 奇米影视777在线观看 | 欧美乱妇狂野欧美在线视频 | 欧美亚州 | www日本在线观看 | 中文字幕一区二区三区视频 | 日韩高清在线播放 | 好了av在线 | 91黄色视屏 | 日韩一级片在线观看 | 中文字幕日韩欧美在线 | 91麻豆精品91久久久久同性 | 一级毛片黄片 | 成人av在线网址 | 国产欧美在线视频 | 国产一区日韩 | 99视频免费看 | www.青青草.com| 天天躁日日躁狠狠躁av麻豆男男 | 成人a√| 精品人妻少妇一区二区三区 | 色午夜婷婷 | 性高湖久久久久久久久免费 |