日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

深度学习如何入门?怎么入门机器/深度学习?

發布時間:2025/5/22 pytorch 54 豆豆
生活随笔 收集整理的這篇文章主要介紹了 深度学习如何入门?怎么入门机器/深度学习? 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

鏈接:https://www.zhihu.com/question/26006703/answer/536169538

怎么入門機器/深度學習?

回答這個問題,最先要考慮的問題是:你有多少時間?

準備用三個月入門,和想要一個月速成,肯定是截然不同的路徑。當然我建議大家穩扎穩打,至少可以拿出五個月的時間來學好機器學習的基礎知識。

基礎很重要,知其所以然很重要。畢竟工具總在進步,每個月都會出現更好的深度學習技術,但基礎知識是不變的。

如何用五個月時間入門?下面分三個部分,詳細指南。(以及,如果你確實時間有限,最后還有一個速成指南)

五個月入門

Part 1:從機器學習開始(兩個月)

最好的入門教程,就是吳恩達講授的機器學習。吳恩達這套課程發布很久了,雖然有些地方稍微過時,但相信我,現在沒有任何公開的課程,能比吳恩達講得更好。真的,課程結束時我幾乎哭了出來。

這個課程可以說適合任何水平的學生,當然,你最好還是得知道兩個矩陣如何相乘,以及對編程有一些基本的了解。

這套課程可以前往Coursera學習,傳送門:
https://www.coursera.org/learn/machine-learning
也可以上網易公開課收看,傳送門:
http://open.163.com/special/opencourse/machinelearning.html

如果你有時間,一定要聽完全部的課程。如果時間緊張,至少要聽完前五節課程,后面的可以暫時跳過。

吳恩達的機器學習課程深入講解了經典的機器學習模型,如線性回歸、邏輯回歸、神經網絡、支持向量機、PCA、無監督學習等等。大部分重要概念,都以簡單易懂的方式進行了介紹。

課程延伸

當你學習到第五節課,也就是開始講述神經網絡時,建議開始查看與課程平行的外部資料。比方3bule1brown推出的神經網絡講解視頻。推薦必看。

YouTube傳送門:
https://youtu.be/aircAruvnKk?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
或者可以前往B站查看:
http://space.bilibili.com/88461692/#/

以及,我覺得吳恩達在講神經網絡時有點快,所以建議補充閱讀一些資料。比如有關神經網絡和深度學習的在線書籍,免費的就很好了。

傳送門:
http://neuralnetworksanddeeplearning.com/

?

作者Michael A. Nielsen以一種簡單直觀的方式,深入探究了神經網絡的每個細節。建議閱讀這本書的前兩章,與吳恩達的課程并行。當你熟悉更多概念后,開始搞深度學習時,可以再看書中的其余部分。

如果你英文不好,這本《神經網絡與深度學習》也有中文翻譯版本,可以免費在線查看。

傳送門在此:
https://tigerneil.gitbooks.io/neural-networks-and-deep-learning-zh/content/

?

?

這個部分的學習結束之后,你就能明白機器/深度學習的許多概念。最后推薦閱讀Christopher Olah的博客,很有意思。

傳送門:http://colah.github.io/

?

Part 2:涉足深度學習(1個月)

開始研究深度學習之前,最好重溫一下大學數學。Ian Goodfellow傳奇般的“花書”《深度學習》,簡明扼要的概括了大部分重要主題。

建議大家盡可能深入地閱讀線性代數、概率、信息理論的章節。每當讀論文遇到深度學習概念時,都可以在書中找到參考。

?

以及,這本書有在線的版本。

例如英文版在此:
https://github.com/janishar/mit-deep-learning-book-pdf/blob/master/complete-book-bookmarked-pdf/deeplearningbook.pdf 。
而中文翻譯版本在此:
https://github.com/exacity/deeplearningbook-chinese

?

關于深度學習的在線資料有很多,你可能會挑花了眼。

再一次,我覺得最好的選擇,還是聽吳恩達的《深度學習專項系列課程(Deep Learning Specialization)》。

Coursera傳送門:
https://www.coursera.org/specializations/deep-learning
網易云課堂的傳送門:
https://mooc.study.163.com/smartSpec/detail/1001319001.htm/

這門課程包括五大章節。其實不是免費的,你可以按照50美元/月購買。當然,如果你負擔不起,還能申請“助學金”。申請時請詳細闡明理由,處理的時間大概需要15天左右。

當然不付費,大部分內容都是可以看的。以及視頻的部分,在很多地方也能免費收看。

這五門課程主要講的是:

1、神經網絡和深度學習(4周)

2、改善深度神經網絡(3周)

3、結構化機器學習項目(2周)

4、卷積神經網絡(4周)

5、序列模型(3周)

?

前三門課程涉及一般的神經網絡和深度學習,第四、第五門課程涉及特定主題。如果你打算搞視覺,第四課必聽;如果你搞NLP、音頻等,第五課必聽。但如果你需要聽第五課,那么建議也把第四課好好聽一下。

這里鼓勵大家一下,課程里每周的內容,實際上一兩天就能學完,所以不要被課程表嚇倒。勞逸集合、提升效率。

學到這個地步,其實就可以再去http://neuralnetworksanddeeplearning.com/ ,查看第三到第六章的內容,來強化你的概念。如果你有什么還沒搞懂的,請前往Olah的博客。

以及,這時候你要開始看深度學習的論文了,從中學習知識。深度學習有個強烈的特點,那就是內容都非常新,閱讀論文是跟上時代唯一的方法。不想被拋下,那么還是養成閱讀論文的好習慣吧。

Part 3:深度學習上手練(兩個月)

學到這里,你應該對機器學習和深度學習中的大多數概念有了正確的理解,現在是時候投入沸騰的實際生活中了。

練手深度學習,最好的資源在fast.ai。

?

傳送門在此:http://course.fast.ai/

他們在流行的深度學習工具PyTorch上構建了一個庫,只需要幾行代碼,就能實現世界級的性能。

fast.ai的理念有點不同。吳恩達等老師的教授方法是自上而下,先講再做。而fast.ai倡導自下而上,先做再講。

所以在他們的課程中,第一節就帶你建立一個強大的圖像分類器。自己訓練模型的快感,刺激著你去完成其余的課程。

?

除此以外,還要推薦兩門課。

斯坦福大學的CS231n和CS224n。CS231n專注于計算機視覺的深度學習,而CS224n專注于序列建模。

CS231n,李飛飛等主講。
官網傳送門:http://cs231n.stanford.edu/
CS224n,目前是Richard Socher主講。
官網傳送門:http://web.stanford.edu/class/cs224n/

此前的課程,網上也有中文字幕版本,大家可自行搜索。

到這里,為期五個月的機器/深度學習入門就結束了。

希望大家都能穩扎穩打,夯實基礎。

以及最后,兌現一個開頭的承諾。如果你確實時間很緊張,必須盡快入門機器/深度學習,那么請看——

速成指南

我最多只有倆月

1、完成吳恩達機器學習課程的前五周,要做編程練習。

2、看完3Blue1Brown的視頻。

3、完成吳恩達的深度學習專項系列課程,做練習。

4、如果你想搞圖像,看專項課程第四講,搞NLP或序列數據,看第五講。

5、搜索你感興趣的開源實現。如果你還沒想好用什么語言,推薦Keras。然后根據需要,再遷到TensorFlow或者PyTorch框架。

我,只有一個月

想要在30天完成入門超級困難。除非,你只是想了解機器學習的工作原理,然后應用到自己的項目中。

如果是這樣的話,速成建議如下:

1、略讀吳恩達機器學習課程第1-5周的課程,只看視頻,掌握概念即可。第三周可以跳過MATLAB/Octave課程。

2、看完3Blue1Brow的視頻。

3、略讀吳恩達深度學習專項系列課程的第一課,也就是神經網絡和深度學習。

4、如果你想做圖像處理項目,看一下Nielsen書中的第六章:http://neuralnetworksanddeeplearning.com/chap6.html

如果你需要序列建模的一些想法,可以看看Olah的博客:http://colah.github.io/posts/2015-08-Understanding-LSTMs/

5、Siraj Raval拍了很多有趣的視頻,涉及大多數機器/深度學習的主題。傳送門在此:https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

6、搜索跟你感興趣的開源實現,隨時調整以滿足你的需求。如前所述,我推薦你先用帶有TensorFlow后端的Keras語言。

其他資源

YouTube上有一個兩分鐘讀論文的系列視頻,可以幫你快速了解全球深度學習的最熱門進展。

如果你關注進機器學習領域的進展,Twitter是個絕佳的工具。

遇到困境的時候,記得reddit和Facebook上有很多志同道合的人,不要猶豫,在社區里尋求幫助,大家會伸出援手。

結論

機器學習和深度學習是當今世界最具魅力的技術之一。而且這個領域的深度學習專家總是處于稀缺的狀態。從職業前景來看,深度學習非常吸引人。

需要提醒的是,與計算機學科的其他領域不同,深度學習的資源還不夠豐富。很多時候你會遇到失敗挫折,千萬不要灰心喪氣,你可以向更多人尋求幫助,很多人都愿意伸出援手,大家都在學習。

關于機器/深度學習,有一個誤解是需要計算機科學的背景才能學習。這不是真的,你確實需要一些編程的思維才好入手,但也僅限于此?,F在機器學習領域的很多專家,都來自其他研究領域。

如果你有計算機科學的背景,這是一個非常好的開始。但如果你出身其他學科,想要迎頭趕上并不難。

感謝看到這里。

原作:Masum Hasan

問耕 編譯整理

原作地址:

https://medium.com/@youngladesh/absolute-beginners-guide-to-machine-learning-and-deep-learning-7fa032944047

總結

以上是生活随笔為你收集整理的深度学习如何入门?怎么入门机器/深度学习?的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。