sqoop mysql where_Sqoop基本语法简介
1.查看命令幫助
[hadoop@hadoop000 ~]$ sqoop help
usage: sqoop COMMAND [ARGS]
Available commands:
codegen Generate code to interact with database records
create-hive-table Import a table definition into Hive
eval Evaluate a SQL statement and display the results
export Export an HDFS directory to a database table
help List available commands
import Import a table from a database to HDFS
import-all-tables Import tables from a database to HDFS
import-mainframe Import datasets from a mainframe server to HDFS
job Work with saved jobs
list-databases List available databases on a server
list-tables List available tables in a database
merge Merge results of incremental imports
metastore Run a standalone Sqoop metastore
version Display version information
See 'sqoop help COMMAND' for information on a specific command.
這里提示我們使用sqoop help command(要查詢的命令)進行該命令的詳細查詢
2.list-databases
查看list-databases命令幫助
[hadoop@hadoop000 ~]$ sqoop help list-databases
usage: sqoop list-databases [GENERIC-ARGS] [TOOL-ARGS]
Common arguments:
--connect Specify JDBC connect
string
--connection-manager Specify connection manager
class name
--connection-param-file Specify connection
parameters file
--driver Manually specify JDBC
driver class to use
--hadoop-home Override
$HADOOP_MAPRED_HOME_ARG
--hadoop-mapred-home
$HADOOP_MAPRED_HOME_ARG
--help Print usage instructions
-P Read password from console
--password Set authentication
password
--password-alias Credential provider
password alias
--password-file Set authentication
password file path
--relaxed-isolation Use read-uncommitted
isolation for imports
--skip-dist-cache Skip copying jars to
distributed cache
--username Set authentication
username
--verbose Print more information
while working
簡單使用
[hadoop@oradb3 ~]$ sqoop list-databases \
--connect jdbc:mysql://localhost:3306 \
--username root \
--password 123456
結果
information_schema
mysql
performance_schema
slow_query_log
sys
test
3.list-tables
命令幫助
[hadoop@hadoop000 ~]$ sqoop help list-tables
usage: sqoop list-tables [GENERIC-ARGS] [TOOL-ARGS]
Common arguments:
--connect Specify JDBC connect
string
--connection-manager Specify connection manager
class name
--connection-param-file Specify connection
parameters file
--driver Manually specify JDBC
driver class to use
--hadoop-home Override
$HADOOP_MAPRED_HOME_ARG
--hadoop-mapred-home
$HADOOP_MAPRED_HOME_ARG
--help Print usage instructions
-P Read password from console
--password Set authentication
password
--password-alias Credential provider
password alias
--password-file Set authentication
password file path
--relaxed-isolation Use read-uncommitted
isolation for imports
--skip-dist-cache Skip copying jars to
distributed cache
--username Set authentication
username
--verbose Print more information
while working
使用方法
[hadoop@hadoop000 ~]$ sqoop list-tables \
--connect jdbc:mysql://localhost:3306/test \
--username root \
--password 123456
結果
t_order
test0001
test_1013
test_dyc
test_tb
4.將mysql導入HDFS中(import)
(默認導入當前用戶目錄下/user/用戶名/表名)
說到這里擴展一個小知識點:
hadoop fs -ls 顯示的是當前的用戶目錄 即/user/hadoop
hadoop fs -ls / 顯示的是HDFS根目錄
查看命令幫助
[hadoop@hadoop000 ~]$ sqoop help import
執行import
[hadoop@hadoop000 ~]$ sqoop import \
--connect jdbc:mysql://localhost:3306/test \
--username root \
--password 123456 \
--table students
這時很可能會出現這個錯誤
Exception in thread "main" java.lang.NoClassDefFoundError: org/json/JSONObject
這里我們需要導入java-json.jar包 下載地址 把java-json.jar添加到../sqoop/lib目錄下即可
再次執行 import導入
[hadoop@hadoop000 ~]$ sqoop import \
--connect jdbc:mysql://localhost:3306/test \
--username root \
--password 123456 \
--table students
18/07/04 13:28:35 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6-cdh5.7.0
18/07/04 13:28:35 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
18/07/04 13:28:35 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
18/07/04 13:28:35 INFO tool.CodeGenTool: Beginning code generation
18/07/04 13:28:35 INFO manager.SqlManager: Executing SQL statement: SELECT t.FROM students AS t LIMIT 1
18/07/04 13:28:35 INFO manager.SqlManager: Executing SQL statement: SELECT t. FROM students AS t LIMIT 1
18/07/04 13:28:35 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/app/hadoop-2.6.0-cdh5.7.0
18/07/04 13:28:37 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/3024b8df04f623e8c79ed9b5b30ace75/students.jar
18/07/04 13:28:37 WARN manager.MySQLManager: It looks like you are importing from mysql.
18/07/04 13:28:37 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
18/07/04 13:28:37 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
18/07/04 13:28:37 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
18/07/04 13:28:37 INFO mapreduce.ImportJobBase: Beginning import of students
18/07/04 13:28:38 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
18/07/04 13:28:39 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
18/07/04 13:28:39 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
18/07/04 13:28:41 INFO db.DBInputFormat: Using read commited transaction isolation
18/07/04 13:28:41 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(id), MAX(id) FROM students
18/07/04 13:28:41 INFO db.IntegerSplitter: Split size: 0; Num splits: 4 from: 1001 to: 1003
18/07/04 13:28:41 INFO mapreduce.JobSubmitter: number of splits:3
18/07/04 13:28:42 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1530598609758_0015
18/07/04 13:28:42 INFO impl.YarnClientImpl: Submitted application application_1530598609758_0015
18/07/04 13:28:42 INFO mapreduce.Job: The url to track the job: http://oradb3:8088/proxy/application_1530598609758_0015/
18/07/04 13:28:42 INFO mapreduce.Job: Running job: job_1530598609758_0015
18/07/04 13:28:52 INFO mapreduce.Job: Job job_1530598609758_0015 running in uber mode : false
18/07/04 13:28:52 INFO mapreduce.Job: map 0% reduce 0%
18/07/04 13:28:58 INFO mapreduce.Job: map 33% reduce 0%
18/07/04 13:28:59 INFO mapreduce.Job: map 67% reduce 0%
18/07/04 13:29:00 INFO mapreduce.Job: map 100% reduce 0%
18/07/04 13:29:00 INFO mapreduce.Job: Job job_1530598609758_0015 completed successfully
18/07/04 13:29:00 INFO mapreduce.Job: Counters: 30
...
18/07/04 13:29:00 INFO mapreduce.ImportJobBase: Transferred 40 bytes in 21.3156 seconds (1.8766 bytes/sec)
18/07/04 13:29:00 INFO mapreduce.ImportJobBase: Retrieved 3 records.
生成的日志信息大家一定要好好理解
查看HDFS上的文件
[hadoop@hadoop000 ~]$ hadoop fs -ls /user/hadoop/students
Found 4 items
-rw-r--r-- 1 hadoop supergroup 0 2018-07-04 13:28 /user/hadoop/students/_SUCCESS
-rw-r--r-- 1 hadoop supergroup 13 2018-07-04 13:28 /user/hadoop/students/part-m-00000
-rw-r--r-- 1 hadoop supergroup 13 2018-07-04 13:28 /user/hadoop/students/part-m-00001
-rw-r--r-- 1 hadoop supergroup 14 2018-07-04 13:28 /user/hadoop/students/part-m-00002
[hadoop@hadoop000 ~]$ hadoop fs -cat /user/hadoop/students/"part*"
1001,lodd,23
1002,sdfs,21
1003,sdfsa,24
我們還可以加一些其他參數 使導入過程更加可控
-m 指定啟動map進程個數,默認是4個
--delete-target-dir 刪除目標目錄
--mapreduce-job-name 指定mapreduce的job的名字
--target-dir 導入到指定目錄
--fields-terminated-by 指定字段之間的分隔符
--null-string 含義是 string類型的字段,當Value是NULL,替換成指定的字符
--null-non-string 含義是非string類型的字段,當Value是NULL,替換成指定字符
--columns 導入表中的部分字段
--where 按條件導入數據
--query 按照sql語句進行導入 使用--query關鍵字,就不能使用--table和--columns
--options-file 在文件中執行
執行導入
[hadoop@hadoop000 ~]$ sqoop import \
--connect jdbc:mysql://localhost:3306/test \
--username root --password 123456 \
--mapreduce-job-name FromMySQL2HDFS \
--delete-target-dir \
--table students \
-m 1
HDFS中查看
[hadoop@hadoop000 ~]$ hadoop fs -ls /user/hadoop/students
Found 2 items
-rw-r--r-- 1 hadoop supergroup 0 2018-07-04 13:53 /user/hadoop/students/_SUCCESS
-rw-r--r-- 1 hadoop supergroup 40 2018-07-04 13:53 /user/hadoop/students/part-m-00000
[hadoop@oradb3 ~]$ hadoop fs -cat /user/hadoop/students/"part*"
1001,lodd,23
1002,sdfs,21
1003,sdfsa,24
使用where 參數
[hadoop@hadoop000 ~]$ sqoop import \
--connect jdbc:mysql://localhost:3306/test \
--username root --password 123456 \
--table students \
--mapreduce-job-name FromMySQL2HDFS2 \
--delete-target-dir \
--fields-terminated-by '\t' \
-m 1 \
--null-string 0 \
--columns "name" \
--target-dir STU_COLUMN_WHERE \
--where 'id<1002'
HDFS 結果
[hadoop@hadoop000 ~]$ hadoop fs -cat STU_COLUMN_WHERE/"part*"
lodd
使用query 參數
[hadoop@hadoop000 ~]$ sqoop import \
--connect jdbc:mysql://localhost:3306/test \
--username root --password 123456 \
--mapreduce-job-name FromMySQL2HDFS3 \
--delete-target-dir \
--fields-terminated-by '\t' \
-m 1 \
--null-string 0 \
--target-dir STU_COLUMN_QUERY \
--query "select * from students where id>1001 and \$CONDITIONS"
HDFS查看
[hadoop@hadoop000 ~]$ hadoop fs -cat STU_COLUMN_QUERY/"part*"
1002 sdfs 21
1003 sdfsa 24
使用options-file參數
[hadoop@hadoop000 ~]$ vi sqoop-import-hdfs.txt
import
--connect
jdbc:mysql://localhost:3306/test
--username
root
--password
123456
--table
students
--target-dir
STU_option_file
執行導入
[hadoop@hadoop000 ~]$ sqoop --options-file /home/hadoop/sqoop-import-hdfs.txt
HDFS查看
[hadoop@hadoop000 ~]$ hadoop fs -cat STU_option_file/"part*"
1001,lodd,23
1002,sdfs,21
1003,sdfsa,24
5.eval
查看幫助命令對與該命令的解釋為: Evaluate a SQL statement and display the results,也就是說執行一個SQL語句并查詢出結果。
查看命令幫助
[hadoop@hadoop000 ~]$ sqoop help eval
usage: sqoop eval [GENERIC-ARGS] [TOOL-ARGS]
Common arguments:
--connect Specify JDBC connect
string
--connection-manager Specify connection manager
class name
--connection-param-file Specify connection
parameters file
--driver Manually specify JDBC
driver class to use
--hadoop-home Override
$HADOOP_MAPRED_HOME_ARG
--hadoop-mapred-home
$HADOOP_MAPRED_HOME_ARG
--help Print usage instructions
-P Read password from console
--password Set authentication
password
--password-alias Credential provider
password alias
--password-file Set authentication
password file path
--relaxed-isolation Use read-uncommitted
isolation for imports
--skip-dist-cache Skip copying jars to
distributed cache
--username Set authentication
username
--verbose Print more information
while working
SQL evaluation arguments:
-e,--query Execute 'statement' in SQL and exit
執行
[hadoop@hadoop000 ~]$ sqoop eval \
--connect jdbc:mysql://localhost:3306/test \
--username root --password 123456 \
--query "select * from students"
18/07/04 14:28:44 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6-cdh5.7.0
18/07/04 14:28:44 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
18/07/04 14:28:44 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
| id | name | age |
| 1001 | lodd | 23 |
| 1002 | sdfs | 21 |
| 1003 | sdfsa | 24 |
6.export (HDFS數據導出到MySQL或Hive中的數據導入到MySQL)
常用參數:
--table 指定導出表的名稱
--input-fields-terminated-by 指定hdfs上文件的分隔符,默認是逗號
--export-dir 導出數據的目錄
--columns 指定導出的字段
在執行導出語句前mysql要先創建表(不創建表會報錯):
HDFS原文件
[hadoop@hadoop000 ~]$ hadoop fs -cat /user/hadoop/students/part-m-00000
1001,lodd,23
1002,sdfs,21
1003,sdfsa,24
export導出到mysql
[hadoop@hadoop000 ~]$ sqoop export \
--connect jdbc:mysql://localhost:3306/test \
--username root \
--password 123456 \
--table students_demo \
--export-dir /user/hadoop/students/
18/07/04 14:46:20 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6-cdh5.7.0
18/07/04 14:46:20 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
18/07/04 14:46:20 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
18/07/04 14:46:20 INFO tool.CodeGenTool: Beginning code generation
18/07/04 14:46:21 INFO manager.SqlManager: Executing SQL statement: SELECT t.FROM students_demo AS t LIMIT 1
18/07/04 14:46:21 INFO manager.SqlManager: Executing SQL statement: SELECT t. FROM students_demo AS t LIMIT 1
18/07/04 14:46:21 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/app/hadoop-2.6.0-cdh5.7.0
18/07/04 14:46:24 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/fc7b53dd6eef701c0731c7a7c4a4b340/students_demo.jar
18/07/04 14:46:24 INFO mapreduce.ExportJobBase: Beginning export of students_demo
18/07/04 14:46:25 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
18/07/04 14:46:25 INFO Configuration.deprecation: mapred.map.max.attempts is deprecated. Instead, use mapreduce.map.maxattempts
18/07/04 14:46:26 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
18/07/04 14:46:26 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
18/07/04 14:46:26 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
...
18/07/04 14:46:55 INFO mapreduce.ExportJobBase: Transferred 672 bytes in 29.3122 seconds (22.9256 bytes/sec)
18/07/04 14:46:55 INFO mapreduce.ExportJobBase: Exported 3 records.
mysql中查看
mysql> select * from students_demo;
+------+-------+------+
| id | name | age |
+------+-------+------+
| 1001 | lodd | 23 |
| 1002 | sdfs | 21 |
| 1003 | sdfsa | 24 |
+------+-------+------+
3 rows in set (0.00 sec)
如果再導入一次會追加在表中
增加columns參數
[hadoop@hadoop000 ~]$ sqoop export \
--connect jdbc:mysql://localhost:3306/test \
--username root \
--password 123456 \
--table students_demo2 \
--export-dir /user/hadoop/students/ \
--columns id,name
mysql結果
mysql> select * from students_demo2;
+------+-------+------+
| id | name | age |
+------+-------+------+
| 1001 | lodd | NULL |
| 1002 | sdfs | NULL |
| 1003 | sdfsa | NULL |
+------+-------+------+
3 rows in set (0.00 sec)
7.MySQL的中的數據導入到Hive中
常用參數:
--create-hive-table 創建目標表,如果有會報錯
--hive-database 指定hive數據庫
--hive-import 指定導入hive(沒有這個條件導入到hdfs中)
--hive-overwrite 覆蓋
--hive-table 指定hive中表的名字,如果不指定使用導入的表的表名
--hive-partition-key 指定Hive分區表字段
--hive-partition-value 指定導入的分區值
首次導入可能會報錯如下:
18/07/04 15:06:26 ERROR hive.HiveConfig: Could not load org.apache.hadoop.hive.conf.HiveConf. Make sure HIVE_CONF_DIR is set correctly.
18/07/04 15:06:26 ERROR tool.ImportTool: Encountered IOException running import job: java.io.IOException: java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf
解決方法:到hive目錄的lib下拷貝幾個jar包,問題就解決了
報錯解決方法
[hadoop@hadoop000 lib]$ pwd
/home/hadoop/app/hive-1.1.0-cdh5.7.0/lib
[hadoop@hadoop000 lib]$ cp hive-common-1.1.0-cdh5.7.0.jar /home/hadoop/app/sqoop-1.4.6-cdh5.7.0/lib/
[hadoop@hadoop000 lib]$ cp hive-shims* /home/hadoop/app/sqoop-1.4.6-cdh5.7.0/lib/
報錯解決后執行導入
[hadoop@hadoop000 ~]$ sqoop import \
--connect jdbc:mysql://localhost:3306/test \
--username root --password 123456 \
--table students \
--create-hive-table \
--hive-database hive \
--hive-import \
--hive-overwrite \
--hive-table stu_import \
--mapreduce-job-name FromMySQL2HIVE \
--delete-target-dir \
--fields-terminated-by '\t' \
-m 1 \
--null-non-string 0
Hive中查看
hive> show tables;
OK
stu_import
Time taken: 0.051 seconds, Fetched: 1 row(s)
hive> select * from stu_import;
OK
1001 lodd 23
1002 sdfs 21
1003 sdfsa 24
Time taken: 0.969 seconds, Fetched: 3 row(s)
建議:導入Hive不建議大家使用–create-hive-table參數,建議事先創建好hive表;因為自動創建的表字段類型可能并不是我們想要的。
增加partition參數
[hadoop@hadoop000 ~]$ sqoop import \
--connect jdbc:mysql://localhost:3306/test \
--username root --password 123456 \
--table students \
--create-hive-table \
--hive-database hive \
--hive-import \
--hive-overwrite \
--hive-table stu_import2 \
--mapreduce-job-name FromMySQL2HIVE2 \
--delete-target-dir \
--fields-terminated-by '\t' \
-m 1 \
--null-non-string 0 \
--hive-partition-key dt \
--hive-partition-value "2018-08-08"
Hive中查看
hive> select * from stu_import2;
OK
1001 lodd 23 2018-08-08
1002 sdfs 21 2018-08-08
1003 sdfsa 24 2018-08-08
Time taken: 0.192 seconds, Fetched: 3 row(s)
8.sqoop job的使用
sqoop job可以將執行的語句變成一個job,并不是在創建語句的時候執行,你可以查看該job,可以任何時候執行該job,也可以刪除job,這樣就方便我們進行任務的調度。
--create 創建一個新的job.
--delete 刪除job
--exec 執行job
--show 顯示job的參數
--list 列出所有的job
創建job
[hadoop@hadoop000 ~]$ sqoop job --create person_job1 -- import --connect jdbc:mysql://localhost:3306/test \
--username root \
--password 123456 \
--table students_demo \
-m 1 \
--delete-target-dir
查看job
[hadoop@hadoop000 ~]$ sqoop job --list
Available jobs:
person_job1
執行job 會提示輸入mysql root用戶密碼
[hadoop@hadoop000 ~]$ sqoop job --exec person_job1
HDFS查看
[hadoop@hadoop000 lib]$ hadoop fs -ls /user/hadoop/students_demo
Found 2 items
-rw-r--r-- 1 hadoop supergroup 0 2018-07-04 15:34 /user/hadoop/students_demo/_SUCCESS
-rw-r--r-- 1 hadoop supergroup 40 2018-07-04 15:34 /user/hadoop/students_demo/part-m-00000
我們發現執行person_job的時候,需要輸入數據庫的密碼,怎么樣能不輸入密碼呢
配置sqoop-site.xml即可解決
將sqoop.metastore.client.record.password參數的注釋去掉 或者再添加一下
[hadoop@hadoop000 conf]$ pwd
/home/hadoop/app/sqoop-1.4.6-cdh5.7.0/conf
[hadoop@hadoop000 conf]$ vi sqoop-site.xml
sqoop.metastore.client.record.password
true
If true, allow saved passwords in the metastore.
讓丙肝患者稱為“神藥”
總結
以上是生活随笔為你收集整理的sqoop mysql where_Sqoop基本语法简介的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 日期加星期存入mysql_在MySQL中
- 下一篇: linux cmake编译源码,linu