日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【Deep Learning】Tensorflow实现逻辑回归

發(fā)布時間:2025/4/16 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【Deep Learning】Tensorflow实现逻辑回归 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
# -*- coding: utf-8 -*- ''' Created on 2018年4月20日@author: user ''' import tensorflow as tf # Import MINST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)# Parameters learning_rate = 0.01 training_epochs = 25 batch_size = 100 display_step = 1# tf Graph Input x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784 y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes# Set model weights W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10]))# Construct model pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax# Minimize error using cross entropy cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1)) # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)# Initializing the variables init = tf.initialize_all_variables()# Launch the graph with tf.Session() as sess:sess.run(init)# Training cyclefor epoch in range(training_epochs):avg_cost = 0.total_batch = int(mnist.train.num_examples/batch_size)# Loop over all batchesfor i in range(total_batch):batch_xs, batch_ys = mnist.train.next_batch(batch_size)# Run optimization op (backprop) and cost op (to get loss value)_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,y: batch_ys})# Compute average lossavg_cost += c / total_batch# Display logs per epoch stepif (epoch+1) % display_step == 0:print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)print "Optimization Finished!"# Test modelcorrect_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))# Calculate accuracyaccuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})

總結(jié)

以上是生活随笔為你收集整理的【Deep Learning】Tensorflow实现逻辑回归的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。