日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程语言 > java >内容正文

java

机器学习知识点(十八)密度聚类DBSCAN算法Java实现

發(fā)布時(shí)間:2025/4/16 java 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 机器学习知识点(十八)密度聚类DBSCAN算法Java实现 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

為更好理解聚類算法,從網(wǎng)上找現(xiàn)成代碼來理解,發(fā)現(xiàn)了一個(gè)Java自身的ML庫,鏈接:http://java-ml.sourceforge.net/

有興趣可以下載來看看源碼,理解基礎(chǔ)ML算法。對(duì)于DBSCAN算法,從網(wǎng)上找到一個(gè)Java實(shí)現(xiàn)的,主要是用來理解其算法過程。參考代碼如下:

1、Point類,數(shù)據(jù)對(duì)象

package sk.cluster;public class Point {private double x;//坐標(biāo)x軸private double y;//坐標(biāo)y軸private boolean isVisit;//是佛訪問標(biāo)記private int cluster;//所屬簇類private boolean isNoised;//是否是噪音數(shù)據(jù)public Point(double x,double y) {this.x = x;this.y = y;this.isVisit = false;this.cluster = 0;this.isNoised = false;}public double getDistance(Point point) {//計(jì)算兩點(diǎn)間距離return Math.sqrt((x-point.x)*(x-point.x)+(y-point.y)*(y-point.y));}public void setX(double x) {this.x = x;}public double getX() {return x;}public void setY(double y) {this.y = y;}public double getY() {return y;}public void setVisit(boolean isVisit) {this.isVisit = isVisit;}public boolean getVisit() {return isVisit;}public int getCluster() {return cluster;}public void setNoised(boolean isNoised) {this.isNoised = isNoised;}public void setCluster(int cluster) {this.cluster = cluster;}public boolean getNoised() {return this.isNoised;}@Overridepublic String toString() {return x+" "+y+" "+cluster+" "+(isNoised?1:0);}}
2、Data類,數(shù)據(jù)集

package sk.cluster;import java.io.*; import java.text.DecimalFormat; import java.text.NumberFormat; import java.util.ArrayList; import java.util.Random;public class Data {private static DecimalFormat df=(DecimalFormat) NumberFormat.getInstance();//隨機(jī)生成數(shù)據(jù)public static ArrayList<Point> generateSinData(int size) {ArrayList<Point> points = new ArrayList<Point>(size);Random rd = new Random(size);for (int i=0;i<size/2;i++) {double x = format(Math.PI / (size / 2) * (i + 1));double y = format(Math.sin(x)) ;points.add(new Point(x,y));}for (int i=0;i<size/2;i++) {double x = format(1.5 + Math.PI / (size/2) * (i+1));double y = format(Math.cos(x));points.add(new Point(x,y));}return points;}//輸入指定數(shù)據(jù)public static ArrayList<Point> generateSpecialData() {ArrayList<Point> points = new ArrayList<Point>();points.add(new Point(2,2));points.add(new Point(3,1));points.add(new Point(3,4));points.add(new Point(3,14));points.add(new Point(5,3));points.add(new Point(8,3));points.add(new Point(8,6));points.add(new Point(9,8));points.add(new Point(10,4));points.add(new Point(10,7));points.add(new Point(10,10));points.add(new Point(10,14));points.add(new Point(11,13));points.add(new Point(12,7));points.add(new Point(12,15));points.add(new Point(14,7));points.add(new Point(14,9));points.add(new Point(14,15));points.add(new Point(15,8));return points;}//獲取文件數(shù)據(jù)public static ArrayList<Point> getData(String sourcePath) {ArrayList<Point> points = new ArrayList<Point>();File fileIn = new File(sourcePath);try {BufferedReader br = new BufferedReader(new FileReader(fileIn));String line = null;line = br.readLine();while (line != null) {Double x = Double.parseDouble(line.split(",")[3]);Double y = Double.parseDouble(line.split(",")[4]);points.add(new Point(x, y));line = br.readLine();}br.close();} catch (IOException e) {e.printStackTrace();}return points;}//輸出到文件public static void writeData(ArrayList<Point> points,String path) {try {BufferedWriter bw = new BufferedWriter(new FileWriter(path));for (Point point:points) {bw.write(point.toString()+"\n");}bw.close();} catch (IOException e) {e.printStackTrace();}}private static double format(double x) {return Double.valueOf(df.format(x));}}
3、DBSCAN類,實(shí)現(xiàn)DBSCAN算法

package sk.cluster;import java.util.ArrayList;public class DBScan {private double radius;private int minPts;public DBScan(double radius,int minPts) {this.radius = radius;//領(lǐng)域半徑參數(shù)this.minPts = minPts;//領(lǐng)域密度值,該領(lǐng)域內(nèi)有多少個(gè)樣本}public void process(ArrayList<Point> points) {int size = points.size();int idx = 0;int cluster = 1;while (idx<size) {//樣本總數(shù)Point p = points.get(idx++);//choose an unvisited pointif (!p.getVisit()) {p.setVisit(true);//set visitedArrayList<Point> adjacentPoints = getAdjacentPoints(p, points);//計(jì)算兩點(diǎn)距離,看是否在領(lǐng)域內(nèi)//set the point which adjacent points less than minPts noisedif (adjacentPoints != null && adjacentPoints.size() < minPts) {p.setNoised(true);//噪音數(shù)據(jù)} else {//建立該點(diǎn)作為領(lǐng)域核心對(duì)象p.setCluster(cluster);for (int i = 0; i < adjacentPoints.size(); i++) {Point adjacentPoint = adjacentPoints.get(i);//領(lǐng)域內(nèi)的樣本//only check unvisited point, cause only unvisited have the chance to add new adjacent pointsif (!adjacentPoint.getVisit()) {adjacentPoint.setVisit(true);ArrayList<Point> adjacentAdjacentPoints = getAdjacentPoints(adjacentPoint, points);//add point which adjacent points not less than minPts noisedif (adjacentAdjacentPoints != null && adjacentAdjacentPoints.size() >= minPts) {//adjacentPoints.addAll(adjacentAdjacentPoints);for (Point pp : adjacentAdjacentPoints){if (!adjacentPoints.contains(pp)){adjacentPoints.add(pp);}}}}//add point which doest not belong to any clusterif (adjacentPoint.getCluster() == 0) {adjacentPoint.setCluster(cluster);//set point which marked noised before non-noisedif (adjacentPoint.getNoised()) {adjacentPoint.setNoised(false);}}}cluster++;}}if (idx%1000==0) {System.out.println(idx);}}}private ArrayList<Point> getAdjacentPoints(Point centerPoint,ArrayList<Point> points) {ArrayList<Point> adjacentPoints = new ArrayList<Point>();for (Point p:points) {//include centerPoint itselfdouble distance = centerPoint.getDistance(p);if (distance<=radius) {adjacentPoints.add(p);}}return adjacentPoints;}} /* ##DBScan算法流程圖算法:DBScan,基于密度的聚類算法 輸入:D:一個(gè)包含n個(gè)數(shù)據(jù)的數(shù)據(jù)集r:半徑參數(shù)minPts:領(lǐng)域密度閾值 輸出:基于密度的聚類集合 標(biāo)記D中所有的點(diǎn)為unvisted for each p in Dif p.visit = unvisted找出與點(diǎn)p距離不大于r的所有點(diǎn)集合NIf N.size() < minPts標(biāo)記點(diǎn)p為噪聲點(diǎn)Elsefor each p' in NIf p'.visit == unvisted找出與點(diǎn)p距離不大于r的所有點(diǎn)集合N'If N'.size()>=minPts將集合N'加入集合N中去End ifElseIf p'未被聚到某個(gè)簇將p'聚到當(dāng)前簇If p'被標(biāo)記為噪聲點(diǎn)將p'取消標(biāo)記為噪聲點(diǎn)End IfEnd IfEnd IfEnd forEnd ifEnd if End for */
4、client測試類

package sk.cluster;import java.util.ArrayList;public class Client {public static void main(String[] args) {ArrayList<Point> points = Data.generateSinData(200);//隨機(jī)生成200個(gè)pointDBScan dbScan = new DBScan(0.6,4);//r:領(lǐng)域半徑參數(shù) ,minPts領(lǐng)域密度閾值,密度值//ArrayList<Point> points = Data.generateSpecialData();//ArrayList<Point> points = Data.getData("D:\\tmp\\testData.txt");//DBScan dbScan = new DBScan(0.1,1000);dbScan.process(points);for (Point p:points) {System.out.println(p);}Data.writeData(points,"D:\\tmp\\data.txt");}}

總結(jié)

以上是生活随笔為你收集整理的机器学习知识点(十八)密度聚类DBSCAN算法Java实现的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 久久合合| 免费黄色在线播放 | 看片一区 | 国产精品久久久久久久无码 | 人妻互换一区二区三区四区五区 | 毛片2| 中文二区| 影音先锋成人 | 青娱乐超碰在线 | 这里只有精品视频在线观看 | 亚洲人视频在线观看 | 好大好爽好舒服 | 色哟哟中文字幕 | 桥本有菜aⅴ一区二区三区 在线午夜电影 | www精品国产 | 神马国产| 日本一区二区免费高清视频 | 动漫av一区二区三区 | 国产欧美又粗又猛又爽 | 毛片内射 | 日韩久久一区二区 | 91无限观看 | 97视频在线免费观看 | 亚洲av无码一区二区三区在线 | 中日韩黄色大片 | 91视频这里只有精品 | 欧美另类在线观看 | 国产成人三级在线观看 | jiizzyou欧美2 | 免费特级毛片 | 日韩aⅴ片| 麻豆精品久久久久久久99蜜桃 | 国产自产一区二区 | 国产探花一区二区三区 | 黄色一级大片 | 中文在线观看免费视频 | 青娱乐免费在线视频 | 高清av免费 | 人妻少妇偷人精品视频 | 自拍偷拍21p | 精品国模一区二区三区欧美 | 国产原创麻豆 | 亚洲精品乱码久久久久久9色 | av免费在线播放 | 日本网站在线看 | 日视频| 91丝袜美腿 | 日本黄色xxx | 久久xx| 国产91免费| 97精品视频在线观看 | 韩日午夜在线资源一区二区 | 欧美三级特黄 | 日韩精品xxxx| 天天射天天拍 | 国产绳艺sm调教室论坛 | 欧美日韩中文字幕在线播放 | 二区国产 | 91美女在线观看 | 韩国女主播一区 | 人人妻人人藻人人爽欧美一区 | 国产乱国产乱老熟300部视频 | 在线看一区 | 最新日韩视频 | 亚洲最新在线视频 | 丰满少妇麻豆av苏语棠 | 日本50路肥熟bbw | 国产在线专区 | 亚洲美女视频网 | 国产激情视频一区 | 麻豆自拍偷拍 | 国产三级精品三级在线观看 | 97免费超碰| 亚洲天堂最新 | 中文字幕影院 | 欧美爱爱视频 | 有码中文字幕 | 影音先锋激情在线 | 泰剧19禁啪啪无遮挡 | 成人看的毛片 | 国产精品免费视频观看 | 空姐吹箫视频大全 | 福利影院在线 | 丰满少妇一区二区三区视频 | 日本欧美一级片 | 日韩一区2区 | 国产成人精品免高潮在线观看 | 久久人人添人人爽添人人片 | 国产亚洲精品成人 | 国产人伦精品一区二区三区 | 亚洲高清在线一区 | 一本之道高清无码视频 | 国产人妖在线 | 国产精品九 | 久久99精品久久久久久三级 | 精品人伦一区二区三电影 | 国产不卡在线观看视频 | 另类激情亚洲 | 男生和女生操操 |