日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

FisherVector编码的来龙去脉

發布時間:2025/4/16 编程问答 19 豆豆
生活随笔 收集整理的這篇文章主要介紹了 FisherVector编码的来龙去脉 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

最近在看動作識別的相關論文,其中有一篇名為two-stream convolutional networks for action recognition in videos的論文在做特征融合時使用到了FisherVector,之前沒有接觸過,所以搜了一下相關的帖子,看到一篇不錯的轉載過來,后期會對這篇論文寫一下概要

這篇blog比較好的地方我認為是對GMM(高斯混合模型)以及似然函數(Likelihood Function)介紹的比較清楚,看過之后也確實對解決之前不了解的,存在疑惑的地方有所幫助

轉自https://blog.csdn.net/shanyicheng1111/article/details/76978029

-------------------------------以下為原文-----------------------------

最近在研究動作識別(Action Recognize)領域的論文和方法。在視頻動作識別領域,深度學習未進入前,傳統方法最好的是iDT.?

IDT采用FisherVector編碼的方式比BOF(Bog of Features)提升了2%-10%.

BOF的編碼方式,最終的視頻特征維度是CodeBook的size大小。原理如圖:)丑到不忍直視...



FiserVector編碼方式,由兩部分組成

首先是由樣本分布估計GMM(高斯混合模型)參數,

然后用GMM模型對視頻原始的iDT特征進行描述(編碼)。

所以不管是BOF還是FisherVector都是相對于Codebook的一種描述。

GMM算法

GMM ,Gaussian Mixture Model,顧名思義,就是說該算法由多個高斯模型線性疊加?混合而成。GMM算法描述的是每一維數據的本身存在的一種分布,如果component足夠多的話,GMM可以逼近任意一種概率密度分布。

我們知道,單個高斯模型的參數為均值和方差。

GMM是一種聚類算法,K代表用多少個高斯模型去描述數據分布。也就是說每個 GMM 由K個Gaussian分布組成,每個Gaussian稱為一個“Component”,這些 Component 線性加成在一起就組成了 GMM 的概率密度函數:


根據數據來推算概率密度通常被稱作 density estimation ,特別地,當我們在已知(或假定)了概率密度函數的形式,而要估計其中的參數的過程被稱作“參數估計”。表示第k個高斯模型的權重,是第k個高斯模型的均值。是第k個高斯模型的方差。

在 GMM 中,我們就需要確定?、?和?這些參數。 找到這樣一組參數,它所確定的概率分布生成這些給定的數據點的概率最大,而這個概率實際上就等于?,我們把這個乘積稱作似然函數 (Likelihood Function)。通常單個點的概率都很小,許多很小的數字相乘起來在計算機里很容易造成浮點數下溢,因此我們通常會對其取對數,把乘積變成加和,得到 log-likelihood function 。接下來我們只要將這個函數最大化,通常采用EM算法。

?進行GMM聚類后,得到的是K個高斯模型的參數,每個高斯模型的參數是?、?和?,所以一共有3KD個參數。(其中D是原始數據的維度,因為每一個GMM是對每一維數據特征進行生成建模的)。


FisherVector編碼

???? 上述生成了GMM模型后,我們就可以在此基礎上對原始數據特征進行編碼。

定義fisher score:?
?????


X服從分布p,p的參數是(、?,? k = 1...K)在fisher kernel中,p是一個GMM,? 是一個視頻的特征集合(iDT中D=426).這個log似然函數對?的梯度,描述了參數?在p生成特征點集合X的過程中如何作用,所以這個fisher score中也包含了GMM生成X的過程中的一些結構化的信息。所以有一種說法,FisherVector的本質是對高斯分布求偏導。

再定義特征由第i個Gaussian component生成的概率:



首先對參數求偏導可得到:?


?????其中?

?????注意這里i是指第i個component,d是指特征?的第d維,偏導是對每個component,對特征每個維度都要計算,所以此時?的維度是(2D+1)*K,D是維度,K是component個數,wi是上述高斯混合模型中Gaussian 分布的權重。又由于?有約束,所以會少一個自由變量,所以?最終的維度是(2D+1)*K-1.


推導到這里,視頻的原始特征iDT應該變為(2D+1)*K-1維FisherVector。在iDT論文中使用的是2DK維,可能是舍棄了高斯混個模型中對權重wi的求導。


參考博客 :

http://blog.csdn.net/happyer88/article/details/46576379

http://blog.csdn.net/ikerpeng/article/details/41644197

http://blog.pluskid.org/?p=39

總結

以上是生活随笔為你收集整理的FisherVector编码的来龙去脉的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 欧美日韩一区电影 | 成人爱爱视频 | 蜜桃视频导航 | 成人免费高清在线播放 | 日韩美一级片 | 韩国视频一区二区 | 国产草草视频 | 天天躁日日躁狠狠躁喷水 | 手机av片| 日本a视频在线观看 | 国产老妇伦国产熟女老妇视频 | 日韩高清影视在线观看 | 午夜福利电影 | 国产又粗又黄又爽又硬 | av观看国产 | 国产黄色免费观看 | 亚欧日韩 | 毛片aaaaa| 中文字幕在线免费视频 | 极品美女销魂一区二区三区 | 亚洲成人av中文字幕 | 人妻少妇精品一区二区三区 | 污污污污污污www网站免费 | 四虎av| 日本特黄特黄刺激大片 | 国产亚洲精品久久久久婷婷瑜伽 | 公车激情云雨小说 | 四虎tv| 欧美做爰全过程免费观看 | 女人扒开屁股让男人桶 | 精品日韩一区 | 黄色网址大全免费 | 伊人av综合网 | xxxx日本黄色 | 国产伦精品一区二区三区视频孕妇 | 九色在线视频 | 午夜影院私人 | 91人妻一区二区三区蜜臀 | 精品久久9999 | 色哟哟在线播放 | 国产av一区精品 | 在线观看免费大片 | 久久精品店 | 久热一区 | av永久| 神马国产 | 9i看片成人免费看片 | 97精品人妻麻豆一区二区 | 舐丝袜脚视频丨vk | 男女无遮挡猛进猛出 | 成人性生生活性生交全黄 | 欧美hdse | 精品免费一区二区 | 蜜臀av午夜精品 | 美国成人av | 在线色导航 | 亚洲精品国偷拍自产在线观看蜜桃 | 日韩福利一区 | 男人天堂va | 欧美日韩国产专区 | jizz性欧美2| 久久中文网 | 可以免费在线观看的av | 久草网视频在线观看 | 一区二区三区免费看视频 | 亚洲日b视频 | 2020亚洲男人天堂 | 久久爱一区二区 | 性五月天 | 国模杨依粉嫩蝴蝶150p | 欧美日韩亚洲国产另类 | 人人插人人干 | 99精品偷自拍 | 精品日本一区二区三区在线观看 | 国产青青操| 国产一区成人 | 国产老女人精品毛片久久 | 亚洲国产精品无码观看久久 | 国产免费的av | 国产精品一区久久 | 黄黄的网站 | 精品美女在线 | 女女高潮h冰块play失禁百合 | 婷婷激情成人 | 一线毛片 | 欧美xo影院 | 91禁在线动漫 | av免费观看网站 | 日本美女视频网站 | 日韩欧美日韩 | 99热在线国产| 免费av网页| 国产这里有精品 | 国际av在线 | 欧美第一视频 | 成人免费公开视频 | 亚洲中文字幕无码不卡电影 | 亚洲国产综合网 | 亚洲精品国产精品乱码不66 |